89 research outputs found

    Coherent, multi-heterodyne spectroscopy using stabilized optical frequency combs

    Full text link
    The broadband, coherent nature of narrow-linewidth fiber frequency combs is exploited to measure the full complex spectrum of a molecular gas through multi-heterodyne spectroscopy. We measure the absorption and phase shift experienced by each of 155,000 individual frequency comb lines, spaced by 100 MHz and spanning from 1495 nm to 1620 nm, after passing through a hydrogen cyanide gas. The measured phase spectrum agrees with Kramers-Kronig transformation of the absorption spectrum. This technique can provide a full complex spectrum rapidly, over wide bandwidths, and with hertz-level accuracy.Comment: 4 pages, 3 figure

    Frequency comb vernier spectroscopy in the near infrared

    Full text link
    We perform femtosecond frequency comb vernier spectroscopy in the near infrared with a femtosecond Er doped fiber laser, a scanning high-finesse cavity and an InGaAs camera. By utilizing the properties of a frequency comb and a scanning high-finesse cavity such spectroscopy provides broad spectral bandwidth, high spectral resolution, and high detection sensitivity on a short time scale. We achieved an absorption sensitivity of ~8E-8 cm-1Hz-1/2 corresponding to a detection limit of ~70 ppbv for acetylene, with a resolution of ~1.1 GHz in single images taken in 0.5 seconds and covering a frequency range of ~5 THz. These measurements have broad applications for sensing other greenhouse gases in this fingerprint near IR region with a simple apparatus.Comment: 14 pages, 5 figure

    Frequency metrology on the 4s 2S1/2 - 4p 2P1/2 transition in the calcium ion for a comparison with quasar data

    Get PDF
    High accuracy frequency metrology on the 4s 2S1/2 - 4p 2P1/2 transition in calcium ions is performed using laser cooled and crystallized ions in a linear Paul trap. Calibration is performed with a frequency comb laser, resulting in a transition frequency of f=755222766.2(1.7) MHz. The accuracy presents an improvement of more than one order of magnitude, and will facilitate a comparison with quasar data in a search for a possible change of the fine structure constant on a cosmological time scale.Comment: Corrected typos (including one on the axis of figure 6

    XUV Frequency Combs via Femtosecond Enhancement Cavities

    Full text link
    We review the current state of tabletop extreme ultraviolet (XUV) sources based on high harmonic generation (HHG) in femtosecond enhancement cavities (fsEC). Recent developments have enabled generation of high photon flux (1014 photons/sec) in the XUV, at high repetition rates (>50 MHz) and spanning the spectral region from 40 nm - 120 nm. This level of performance has enabled precision spectroscopy with XUV frequency combs and promises further applications in XUV spectroscopic and photoemission studies. We discuss the theory of operation and experimental details of the fsEC and XUV generation based on HHG, including current technical challenges to increasing the photon flux and maximum photon energy produced by this type of system. Current and future applications for these sources are also discussed.Comment: invited review article, 38 page

    VUV frequency combs from below-threshold harmonics

    Get PDF
    Recent demonstrations of high-harmonic generation (HHG) at very high repetition frequencies (~100 MHz) may allow for the revolutionary transfer of frequency combs to the vacuum ultraviolet (VUV). This advance necessitates unifying optical frequency comb technology with strong-field atomic physics. While strong-field studies of HHG have often focused on above-threshold harmonic generation (photon energy above the ionization potential), for VUV frequency combs an understanding of below-threshold harmonic orders and their generation process is crucial. Here we present a new and quantitative study of the harmonics 7-13 generated below and near the ionization threshold in xenon gas. We show multiple generation pathways for these harmonics that are manifested as on-axis interference in the harmonic yield. This discovery provides a new understanding of the strong-field, below-threshold dynamics under the influence of an atomic potential and allows us to quantitatively assess the achievable coherence of a VUV frequency comb generated through below threshold harmonics. We find that under reasonable experimental conditions temporal coherence is maintained. As evidence we present the first explicit VUV frequency comb structure beyond the 3rd harmonic.Comment: 16 pages, 4 figures, 1 tabl

    Prospects for precision measurements of atomic helium using direct frequency comb spectroscopy

    Full text link
    We analyze several possibilities for precisely measuring electronic transitions in atomic helium by the direct use of phase-stabilized femtosecond frequency combs. Because the comb is self-calibrating and can be shifted into the ultraviolet spectral region via harmonic generation, it offers the prospect of greatly improved accuracy for UV and far-UV transitions. To take advantage of this accuracy an ultracold helium sample is needed. For measurements of the triplet spectrum a magneto-optical trap (MOT) can be used to cool and trap metastable 2^3S state atoms. We analyze schemes for measuring the two-photon 23S→43S2^3S \to 4^3S interval, and for resonant two-photon excitation to high Rydberg states, 23S→33P→n3S,D2^3S \to 3^3P \to n^3S,D. We also analyze experiments on the singlet-state spectrum. To accomplish this we propose schemes for producing and trapping ultracold helium in the 1^1S or 2^1S state via intercombination transitions. A particularly intriguing scenario is the possibility of measuring the 11S→21S1^1S \to 2^1S transition with extremely high accuracy by use of two-photon excitation in a magic wavelength trap that operates identically for both states. We predict a ``triple magic wavelength'' at 412 nm that could facilitate numerous experiments on trapped helium atoms, because here the polarizabilities of the 1^1S, 2^1S and 2^3S states are all similar, small, and positive.Comment: Shortened slightly and reformatted for Eur. Phys. J.

    Mid-Infrared Frequency Comb Fourier Transform Spectrometer

    Full text link
    Optical frequency-comb-based-high-resolution spectrometers offer enormous potential for spectroscopic applications. Although various implementations have been demonstrated, the lack of suitable mid-infrared comb sources has impeded explorations of molecular fingerprinting. Here we present for the first time a frequency-comb Fourier transform spectrometer operating in the 2100-to-3700-cm-1 spectral region that allows fast and simultaneous acquisitions of broadband absorption spectra with up to 0.0056 cm-1 resolution. We demonstrate part-per-billion detection limits in 30 seconds of integration time for various important molecules including methane, ethane, isoprene, and nitrous oxide. Our system enables precise concentration measurements even in gas mixtures that exhibit continuous absorption bands, and it allows detection of molecules at levels below the noise floor via simultaneous analysis of multiple spectral features. This system represents a near real-time, high-resolution, high-bandwidth mid-infrared spectrometer which is ready to replace traditional Fourier transform spectrometers for many applications in trace gas detection, atmospheric science, and medical diagnostics.Comment: 23 pages (double spaced), 5 figures, 1 tabl

    Cavity-enhanced direct frequency comb spectroscopy

    Full text link
    Cavity-enhanced direct frequency comb spectroscopy combines broad spectral bandwidth, high spectral resolution, precise frequency calibration, and ultrahigh detection sensitivity, all in one experimental platform based on an optical frequency comb interacting with a high-finesse optical cavity. Precise control of the optical frequency comb allows highly efficient, coherent coupling of individual comb components with corresponding resonant modes of the high-finesse cavity. The long cavity lifetime dramatically enhances the effective interaction between the light field and intracavity matter, increasing the sensitivity for measurement of optical losses by a factor that is on the order of the cavity finesse. The use of low-dispersion mirrors permits almost the entire spectral bandwidth of the frequency comb to be employed for detection, covering a range of ~10% of the actual optical frequency. The light transmitted from the cavity is spectrally resolved to provide a multitude of detection channels with spectral resolutions ranging from a several gigahertz to hundreds of kilohertz. In this review we will discuss the principle of cavity-enhanced direct frequency comb spectroscopy and the various implementations of such systems. In particular, we discuss several types of UV, optical, and IR frequency comb sources and optical cavity designs that can be used for specific spectroscopic applications. We present several cavity-comb coupling methods to take advantage of the broad spectral bandwidth and narrow spectral components of a frequency comb. Finally, we present a series of experimental measurements on trace gas detections, human breath analysis, and characterization of cold molecular beams.Comment: 36 pages, 27 figure

    First principles elastic constants and electronic structure of alpha-Pt_2Si and PtSi

    Full text link
    We have carried out a first principles study of the elastic properties and electronic structure for two room-temperature stable Pt silicide phases, tetragonal alpha-Pt_2Si and orthorhombic PtSi. We have calculated all of the equilibrium structural parameters for both phases: the a and c lattice constants for alpha-Pt_2Si and the a, b, and c lattice constants and four internal structural parameters for PtSi. These results agree closely with experimental data. We have also calculated the zero-pressure elastic constants, confirming prior results for pure Pt and Si and predicting values for the six (nine) independent, non-zero elastic constants of alpha-Pt_2Si (PtSi). These calculations include a full treatment of all relevant internal displacements induced by the elastic strains, including an explicit determination of the dimensionless internal displacement parameters for the three strains in alpha-Pt_2Si for which they are non-zero. We have analyzed the trends in the calculated elastic constants, both within a given material as well as between the two silicides and the pure Pt and Si phases. The calculated electronic structure confirms that the two silicides are poor metals with a low density of states at the Fermi level, and consequently we expect that the Drude component of the optical absorption will be much smaller than in good metals such as pure Pt. This observation, combined with the topology found in the first principles spin-orbit split band structure, suggests that it may be important to include the interband contribution to the optical absorption, even in the infrared region.Comment: v1: 27 pages, 7 figures, 13 tables submitted to Phys. Rev. B v2: 10 pages, 4 figures, 12 tables (published in Phys. Rev B) contains only ab-initio calculations; valence force field models are now in a separate paper: cond-mat/010618
    • …
    corecore