89 research outputs found
Coherent, multi-heterodyne spectroscopy using stabilized optical frequency combs
The broadband, coherent nature of narrow-linewidth fiber frequency combs is
exploited to measure the full complex spectrum of a molecular gas through
multi-heterodyne spectroscopy. We measure the absorption and phase shift
experienced by each of 155,000 individual frequency comb lines, spaced by 100
MHz and spanning from 1495 nm to 1620 nm, after passing through a hydrogen
cyanide gas. The measured phase spectrum agrees with Kramers-Kronig
transformation of the absorption spectrum. This technique can provide a full
complex spectrum rapidly, over wide bandwidths, and with hertz-level accuracy.Comment: 4 pages, 3 figure
Frequency comb vernier spectroscopy in the near infrared
We perform femtosecond frequency comb vernier spectroscopy in the near
infrared with a femtosecond Er doped fiber laser, a scanning high-finesse
cavity and an InGaAs camera. By utilizing the properties of a frequency comb
and a scanning high-finesse cavity such spectroscopy provides broad spectral
bandwidth, high spectral resolution, and high detection sensitivity on a short
time scale. We achieved an absorption sensitivity of ~8E-8 cm-1Hz-1/2
corresponding to a detection limit of ~70 ppbv for acetylene, with a resolution
of ~1.1 GHz in single images taken in 0.5 seconds and covering a frequency
range of ~5 THz. These measurements have broad applications for sensing other
greenhouse gases in this fingerprint near IR region with a simple apparatus.Comment: 14 pages, 5 figure
Frequency metrology on the 4s 2S1/2 - 4p 2P1/2 transition in the calcium ion for a comparison with quasar data
High accuracy frequency metrology on the 4s 2S1/2 - 4p 2P1/2 transition in
calcium ions is performed using laser cooled and crystallized ions in a linear
Paul trap. Calibration is performed with a frequency comb laser, resulting in a
transition frequency of f=755222766.2(1.7) MHz. The accuracy presents an
improvement of more than one order of magnitude, and will facilitate a
comparison with quasar data in a search for a possible change of the fine
structure constant on a cosmological time scale.Comment: Corrected typos (including one on the axis of figure 6
XUV Frequency Combs via Femtosecond Enhancement Cavities
We review the current state of tabletop extreme ultraviolet (XUV) sources
based on high harmonic generation (HHG) in femtosecond enhancement cavities
(fsEC). Recent developments have enabled generation of high photon flux (1014
photons/sec) in the XUV, at high repetition rates (>50 MHz) and spanning the
spectral region from 40 nm - 120 nm. This level of performance has enabled
precision spectroscopy with XUV frequency combs and promises further
applications in XUV spectroscopic and photoemission studies. We discuss the
theory of operation and experimental details of the fsEC and XUV generation
based on HHG, including current technical challenges to increasing the photon
flux and maximum photon energy produced by this type of system. Current and
future applications for these sources are also discussed.Comment: invited review article, 38 page
VUV frequency combs from below-threshold harmonics
Recent demonstrations of high-harmonic generation (HHG) at very high
repetition frequencies (~100 MHz) may allow for the revolutionary transfer of
frequency combs to the vacuum ultraviolet (VUV). This advance necessitates
unifying optical frequency comb technology with strong-field atomic physics.
While strong-field studies of HHG have often focused on above-threshold
harmonic generation (photon energy above the ionization potential), for VUV
frequency combs an understanding of below-threshold harmonic orders and their
generation process is crucial. Here we present a new and quantitative study of
the harmonics 7-13 generated below and near the ionization threshold in xenon
gas. We show multiple generation pathways for these harmonics that are
manifested as on-axis interference in the harmonic yield. This discovery
provides a new understanding of the strong-field, below-threshold dynamics
under the influence of an atomic potential and allows us to quantitatively
assess the achievable coherence of a VUV frequency comb generated through below
threshold harmonics. We find that under reasonable experimental conditions
temporal coherence is maintained. As evidence we present the first explicit VUV
frequency comb structure beyond the 3rd harmonic.Comment: 16 pages, 4 figures, 1 tabl
Prospects for precision measurements of atomic helium using direct frequency comb spectroscopy
We analyze several possibilities for precisely measuring electronic
transitions in atomic helium by the direct use of phase-stabilized femtosecond
frequency combs. Because the comb is self-calibrating and can be shifted into
the ultraviolet spectral region via harmonic generation, it offers the prospect
of greatly improved accuracy for UV and far-UV transitions. To take advantage
of this accuracy an ultracold helium sample is needed. For measurements of the
triplet spectrum a magneto-optical trap (MOT) can be used to cool and trap
metastable 2^3S state atoms. We analyze schemes for measuring the two-photon
interval, and for resonant two-photon excitation to high
Rydberg states, . We also analyze experiments on the
singlet-state spectrum. To accomplish this we propose schemes for producing and
trapping ultracold helium in the 1^1S or 2^1S state via intercombination
transitions. A particularly intriguing scenario is the possibility of measuring
the transition with extremely high accuracy by use of
two-photon excitation in a magic wavelength trap that operates identically for
both states. We predict a ``triple magic wavelength'' at 412 nm that could
facilitate numerous experiments on trapped helium atoms, because here the
polarizabilities of the 1^1S, 2^1S and 2^3S states are all similar, small, and
positive.Comment: Shortened slightly and reformatted for Eur. Phys. J.
Mid-Infrared Frequency Comb Fourier Transform Spectrometer
Optical frequency-comb-based-high-resolution spectrometers offer enormous
potential for spectroscopic applications. Although various implementations have
been demonstrated, the lack of suitable mid-infrared comb sources has impeded
explorations of molecular fingerprinting. Here we present for the first time a
frequency-comb Fourier transform spectrometer operating in the
2100-to-3700-cm-1 spectral region that allows fast and simultaneous
acquisitions of broadband absorption spectra with up to 0.0056 cm-1 resolution.
We demonstrate part-per-billion detection limits in 30 seconds of integration
time for various important molecules including methane, ethane, isoprene, and
nitrous oxide. Our system enables precise concentration measurements even in
gas mixtures that exhibit continuous absorption bands, and it allows detection
of molecules at levels below the noise floor via simultaneous analysis of
multiple spectral features. This system represents a near real-time,
high-resolution, high-bandwidth mid-infrared spectrometer which is ready to
replace traditional Fourier transform spectrometers for many applications in
trace gas detection, atmospheric science, and medical diagnostics.Comment: 23 pages (double spaced), 5 figures, 1 tabl
Cavity-enhanced direct frequency comb spectroscopy
Cavity-enhanced direct frequency comb spectroscopy combines broad spectral
bandwidth, high spectral resolution, precise frequency calibration, and
ultrahigh detection sensitivity, all in one experimental platform based on an
optical frequency comb interacting with a high-finesse optical cavity. Precise
control of the optical frequency comb allows highly efficient, coherent
coupling of individual comb components with corresponding resonant modes of the
high-finesse cavity. The long cavity lifetime dramatically enhances the
effective interaction between the light field and intracavity matter,
increasing the sensitivity for measurement of optical losses by a factor that
is on the order of the cavity finesse. The use of low-dispersion mirrors
permits almost the entire spectral bandwidth of the frequency comb to be
employed for detection, covering a range of ~10% of the actual optical
frequency. The light transmitted from the cavity is spectrally resolved to
provide a multitude of detection channels with spectral resolutions ranging
from a several gigahertz to hundreds of kilohertz. In this review we will
discuss the principle of cavity-enhanced direct frequency comb spectroscopy and
the various implementations of such systems. In particular, we discuss several
types of UV, optical, and IR frequency comb sources and optical cavity designs
that can be used for specific spectroscopic applications. We present several
cavity-comb coupling methods to take advantage of the broad spectral bandwidth
and narrow spectral components of a frequency comb. Finally, we present a
series of experimental measurements on trace gas detections, human breath
analysis, and characterization of cold molecular beams.Comment: 36 pages, 27 figure
First principles elastic constants and electronic structure of alpha-Pt_2Si and PtSi
We have carried out a first principles study of the elastic properties and
electronic structure for two room-temperature stable Pt silicide phases,
tetragonal alpha-Pt_2Si and orthorhombic PtSi. We have calculated all of the
equilibrium structural parameters for both phases: the a and c lattice
constants for alpha-Pt_2Si and the a, b, and c lattice constants and four
internal structural parameters for PtSi. These results agree closely with
experimental data. We have also calculated the zero-pressure elastic constants,
confirming prior results for pure Pt and Si and predicting values for the six
(nine) independent, non-zero elastic constants of alpha-Pt_2Si (PtSi). These
calculations include a full treatment of all relevant internal displacements
induced by the elastic strains, including an explicit determination of the
dimensionless internal displacement parameters for the three strains in
alpha-Pt_2Si for which they are non-zero. We have analyzed the trends in the
calculated elastic constants, both within a given material as well as between
the two silicides and the pure Pt and Si phases. The calculated electronic
structure confirms that the two silicides are poor metals with a low density of
states at the Fermi level, and consequently we expect that the Drude component
of the optical absorption will be much smaller than in good metals such as pure
Pt. This observation, combined with the topology found in the first principles
spin-orbit split band structure, suggests that it may be important to include
the interband contribution to the optical absorption, even in the infrared
region.Comment: v1: 27 pages, 7 figures, 13 tables submitted to Phys. Rev. B v2: 10
pages, 4 figures, 12 tables (published in Phys. Rev B) contains only
ab-initio calculations; valence force field models are now in a separate
paper: cond-mat/010618
- …