2,596 research outputs found
Inter-Judge Agreement: An Analysis of the 1990 NFA and AFA-NIET National Individual Events Tournaments
Given the increasing concern about the judge\u27s role in individual events tournaments, and given the paucity of literature specifically pertaining to inter-judge agreement, we sought to analyze the degree of inter-judge agreement at two national level tournaments which employ multiple judge panels in preliminary rounds. The results of the 1990 National Forensics Association Tournament and the 1990 American Forensic Association - National Individual Events Tournament serve as a basis for the analysis
A Maximum Entropy Method of Obtaining Thermodynamic Properties from Quantum Monte Carlo Simulations
We describe a novel method to obtain thermodynamic properties of quantum
systems using Baysian Inference -- Maximum Entropy techniques. The method is
applicable to energy values sampled at a discrete set of temperatures from
Quantum Monte Carlo Simulations. The internal energy and the specific heat of
the system are easily obtained as are errorbars on these quantities. The
entropy and the free energy are also obtainable. No assumptions as to the
specific functional form of the energy are made. The use of a priori
information, such as a sum rule on the entropy, is built into the method. As a
non-trivial example of the method, we obtain the specific heat of the
three-dimensional Periodic Anderson Model.Comment: 8 pages, 3 figure
A note on a third order curvature invariant in static spacetimes
We consider here the third order curvature invariant
in static spacetimes
for which is conformally flat. We evaluate
explicitly the invariant for the -dimensional Majumdar-Papapetrou multi
black-holes solution, confirming that does indeed vanish on the event
horizons of such black-holes. Our calculations show, however, that solely the
vanishing of is not sufficient to locate an event horizon in
non-spherically symmetric spacetimes. We discuss also some tidal effects
associated to the invariant .Comment: 5 pages, 3 figures. Extra material available at
http://vigo.ime.unicamp.br/in
An Adaptive Sampling Scheme to Efficiently Train Fully Convolutional Networks for Semantic Segmentation
Deep convolutional neural networks (CNNs) have shown excellent performance in
object recognition tasks and dense classification problems such as semantic
segmentation. However, training deep neural networks on large and sparse
datasets is still challenging and can require large amounts of computation and
memory. In this work, we address the task of performing semantic segmentation
on large data sets, such as three-dimensional medical images. We propose an
adaptive sampling scheme that uses a-posterior error maps, generated throughout
training, to focus sampling on difficult regions, resulting in improved
learning. Our contribution is threefold: 1) We give a detailed description of
the proposed sampling algorithm to speed up and improve learning performance on
large images. We propose a deep dual path CNN that captures information at fine
and coarse scales, resulting in a network with a large field of view and high
resolution outputs. We show that our method is able to attain new
state-of-the-art results on the VISCERAL Anatomy benchmark
Management of Pulmonary Hypertension From Left Heart Disease in Candidates for Orthotopic Heart Transplantation
Pulmonary hypertension in left heart disease (PH-LHD) commonly complicates prolonged heart failure (HF). When advanced, the PH becomes fixed or out of proportion and is associated with increased morbidity and mortality in patients undergoing orthotopic heart transplant (OHT). To date, the only recommended treatment of out of proportion PH is the treatment of the underlying HF by reducing the pulmonary capillary wedge pressure (PCWP) with medications and often along with use of mechanical circulatory support. Medical therapies typically used in the treatment of World Health Organization (WHO) group 1 pulmonary arterial hypertension (PAH) have been employed off-label in the setting of PH-LHD with varying efficacy and often negative outcomes. We will discuss the current standard of care including treating HF and use of mechanical circulatory support. In addition, we will review the studies published to date assessing the efficacy and safety of PAH medications in patients with PH-LHD being considered for OHT
sQFT: An Autonomous Explanation of the Interactions of Quantum Particles
Successful applications of a conceptually novel setup of Quantum Field Theory, that accounts for all subtheories of the Standard Model (QED, Electroweak Interaction and Higgs, Yang–Mills and QCD) and beyond (Helicity 2), call for a perspective view in a broader conceptual context. The setting is “autonomous” in the sense of being intrinsically quantum. Its principles are: Hilbert space, Poincaré symmetry and causality. Its free quantum fields are obtained from Wigner’s unitary representations of the Poincaré group, with only physical and observable degrees of freedom. A “quantization” of an “underlying” classical theory is not needed. It allows renormalizable perturbation theory with interactions whose detailed structure, and in some cases even the particle content, is predicted by internal consistency. The results confirm and extend observable predictions for the interactions of the Standard Model without assuming a “principle” of gauge invariance
- …