308 research outputs found

    Mutations in Ehrlichia chaffeensis Causing Polar Effects in Gene Expression and Differential Host Specificities

    Get PDF
    Citation: Cheng, C. M., Nair, A. D. S., Jaworski, D. C., & Ganta, R. R. (2015). Mutations in Ehrlichia chaffeensis Causing Polar Effects in Gene Expression and Differential Host Specificities. Plos One, 10(7), 13. doi:10.1371/journal.pone.0132657Ehrlichia chaffeensis, a tick-borne rickettsial, is responsible for human monocytic ehrlichiosis. In this study, we assessed E. chaffeensis insertion mutations impacting the transcription of genes near the insertion sites. We presented evidence that the mutations within the E. chaffeensis genome at four genomic locations cause polar effects in altering gene expressions. We also reported mutations causing attenuated growth in deer (the pathogen's reservoir host) and in dog (an incidental host), but not in its tick vector, Amblyomma americanum. This is the first study documenting insertion mutations in E. chaffeensis that cause polar effects in altering gene expression from the genes located upstream and downstream to insertion sites and the differential requirements of functionally active genes of the pathogen for its persistence in vertebrate and tick hosts. This study is important in furthering our knowledge on E. chaffeensis pathogenesis

    Vaccination with an Attenuated Mutant of Ehrlichia chaffeensis Induces Pathogen-Specific CD4(+) T Cell Immunity and Protection from Tick-Transmitted Wild-Type Challenge in the Canine Host

    Get PDF
    Citation: McGill, J. L., Nair, A. D. S., Cheng, C. M., Rusk, R. A., Jaworski, D. C., & Ganta, R. R. (2016). Vaccination with an Attenuated Mutant of Ehrlichia chaffeensis Induces Pathogen-Specific CD4(+) T Cell Immunity and Protection from Tick-Transmitted Wild-Type Challenge in the Canine Host. Plos One, 11(2), 15. doi:10.1371/journal.pone.0148229Ehrlichia chaffeensis is a tick-borne rickettsial pathogen and the causative agent of human monocytic ehrlichiosis. Transmitted by the Amblyomma americanum tick, E. chaffeensis also causes disease in several other vertebrate species including white-tailed deer and dogs. We have recently described the generation of an attenuated mutant strain of E. chaffeensis, with a mutation in the Ech_0660 gene, which is able to confer protection from secondary, intravenous-administered, wild-type E. chaffeensis infection in dogs. Here, we extend our previous results, demonstrating that vaccination with the Ech_0660 mutant protects dogs from physiologic, tick-transmitted, secondary challenge with wild-type E. chaffeensis; and describing, for the first time, the cellular and humoral immune responses induced by Ech_0660 mutant vaccination and wild-type E. chaffeensis infection in the canine host. Both vaccination and infection induced a rise in E. chaffeensis-specific antibody titers and a significant Th1 response in peripheral blood as measured by E. chaffeensis antigen-dependent CD4(+) T cell proliferation and IFN. production. Further, we describe for the first time significant IL-17 production by peripheral blood leukocytes from both Ech_0660 mutant vaccinated animals and control animals infected with wild-type E. chaffeensis, suggesting a previously unrecognized role for IL-17 and Th17 cells in the immune response to rickettsial pathogens. Our results are a critical first step towards defining the role of the immune system in vaccine-induced protection from E. chaffeensis infection in an incidental host; and confirm the potential of the attenuated mutant clone, Ech_0660, to be used as a vaccine candidate for protection against tick-transmitted E. chaffeensis infection

    Ehrlichia chaffeensis Infection in the Reservoir Host (White-Tailed Deer) and in an Incidental Host (Dog) Is Impacted by Its Prior Growth in Macrophage and Tick Cell Environments

    Get PDF
    Citation: Nair, A. D. S., Cheng, C., Jaworski, D. C., Willard, L. H., Sanderson, M. W., & Ganta, R. R. (2014). Ehrlichia chaffeensis Infection in the Reservoir Host (White-Tailed Deer) and in an Incidental Host (Dog) Is Impacted by Its Prior Growth in Macrophage and Tick Cell Environments. PLOS ONE, 9(10), e109056. https://doi.org/10.1371/journal.pone.0109056Ehrlichia chaffeensis, transmitted from Amblyomma americanum ticks, causes human monocytic ehrlichiosis. It also infects white-tailed deer, dogs and several other vertebrates. Deer are its reservoir hosts, while humans and dogs are incidental hosts. E. chaffeensis protein expression is influenced by its growth in macrophages and tick cells. We report here infection progression in deer or dogs infected intravenously with macrophage- or tick cell-grown E. chaffeensis or by tick transmission in deer. Deer and dogs developed mild fever and persistent rickettsemia; the infection was detected more frequently in the blood of infected animals with macrophage inoculum compared to tick cell inoculum or tick transmission. Tick cell inoculum and tick transmission caused a drop in tick infection acquisition rates compared to infection rates in ticks fed on deer receiving macrophage inoculum. Independent of deer or dogs, IgG antibody response was higher in animals receiving macrophage inoculum against macrophage-derived Ehrlichia antigens, while it was significantly lower in the same animals against tick cell-derived Ehrlichia antigens. Deer infected with tick cell inoculum and tick transmission caused a higher antibody response to tick cell cultured bacterial antigens compared to the antibody response for macrophage cultured antigens for the same animals. The data demonstrate that the host cell-specific E. chaffeensis protein expression influences rickettsemia in a host and its acquisition by ticks. The data also reveal that tick cell-derived inoculum is similar to tick transmission with reduced rickettsemia, IgG response and tick acquisition of E. chaffeensis

    4-Aminopyridine Decreases Progesterone Production by Porcine Granulosa Cells

    Get PDF
    BACKGROUND: Ion channels occur as large families of related genes with cell-specific expression patterns. Granulosa cells have been shown to express voltage-gated potassium channels from more than one family. The purpose of this study was to determine the effects of 4-aminopyridine (4-AP), an antagonist of KCNA but not KCNQ channels. METHODS: Granulosa cells were isolated from pig follicles and cultured with 4-AP, alone or in combination with FSH, 8-CPT-cAMP, estradiol 17β, and DIDS. Complimentary experiments determined the effects of 4-AP on the spontaneously established pig granulosa cell line PGC-2. Granulosa cell or PGC-2 function was assessed by radio-immunoassay of media progesterone accumulation. Cell viability was assessed by trypan blue exclusion. Drug-induced changes in cell membrane potential and intracellular potassium concentration were documented by spectrophotometric determination of DiBAC(4)(3) and PBFI fluorescence, respectively. Expression of proliferating cell nuclear antigen (PCNA) and steroidogenic acute regulatory protein (StAR) was assessed by immunoblotting. Flow cytometry was also used to examine granulosa cell viability and size. RESULTS: 4-AP (2 mM) decreased progesterone accumulation in the media of serum-supplemented and serum-free granulosa cultures, but inhibited cell proliferation only under serum-free conditions. 4-AP decreased the expression of StAR, the production of cAMP and the synthesis of estradiol by PGC-2. Addition of either 8-CPT-cAMP or estradiol 17β to serum-supplemented primary cultures reduced the inhibitory effects of 4-AP. 4-AP treatment was also associated with increased cell size, increased intracellular potassium concentration, and hyperpolarization of resting membrane potential. The drug-induced hyperpolarization of resting membrane potential was prevented either by decreasing extracellular chloride or by adding DIDS to the media. DIDS also prevented 4-AP inhibition of progesterone production. CONCLUSION: 4-AP inhibits basal and FSH-stimulated progesterone production by pig granulosa cells via drug action at multiple interacting steps in the steroidogenic pathway. These inhibitory effects of 4-AP on steroidogenesis may reflect drug-induced changes in intracellular concentrations of K(+)and Cl(- )as well as granulosa cell resting membrane potential

    Predicting the potential distribution of Amblyomma americanum (Acari: Ixodidae) infestation in New Zealand, using maximum entropy-based ecological niche modelling

    Get PDF
    Although currently exotic to New Zealand, the potential geographic distribution of Amblyomma americanum (L.), the lone star tick, was modelled using maximum entropy (MaxEnt). The MaxEnt model was calibrated across the native range of A. americanum in North America using present-day climatic conditions and occurrence data from museum collections. The resulting model was then projected onto New Zealand using both present-day and future climates modelled under two greenhouse gas emission scenarios, representative concentration pathways (RCP) 4.5 (low) and RCP 8.5 (high). Three sets of WorldClim bioclimatic variables were chosen using the jackknife method and tested in MaxEnt using different combinations of model feature class functions and regularization multiplier values. The preferred model was selected based on partial receiver operating characteristic tests, the omission rate and the lowest Akaike information criterion. The final model had four bioclimatic variables, Annual Mean Temperature (BIO1), Annual Precipitation (BIO12), Precipitation Seasonality (BIO15) and Precipitation of Driest Quarter (BIO17), and the projected New Zealand distribution was broadly similar to that of Haemaphysalis longicornis Neumann, New Zealand’s only livestock tick, but with a more extensive predicted suitability. The climate change predictions for the year 2050 under both low and high RCP scenarios projected only moderate increases in habitat suitability along the mountain valleys in the South Island. In conclusion, this analysis shows that given the opportunity and license A. americanum could and would successfully establish in New Zealand and could provide another vector for theileriosis organisms

    The complex TIE between macrophages and angiogenesis

    Get PDF
    Macrophages are primarily known as phagocytic immune cells, but they also play a role in diverse processes, such as morphogenesis, homeostasis and regeneration. In this review, we discuss the influence of macrophages on angiogenesis, the process of new blood vessel formation from the pre-existing vasculature. Macrophages play crucial roles at each step of the angiogenic cascade, starting from new blood vessel sprouting to the remodelling of the vascular plexus and vessel maturation. Macrophages form promising targets for both pro- and anti-angiogenic treatments. However, to target macrophages, we will first need to understand the mechanisms that control the functional plasticity of macrophages during each of the steps of the angiogenic cascade. Here, we review recent insights in this topic. Special attention will be given to the TIE2-expressing macrophage (TEM), which is a subtype of highly angiogenic macrophages that is able to influence angiogenesis via the angiopoietin-TIE pathway

    Nanoscale temperature measurements using non-equilibrium Brownian dynamics of a levitated nanosphere

    Full text link
    Einstein realised that the fluctuations of a Brownian particle can be used to ascertain properties of its environment. A large number of experiments have since exploited the Brownian motion of colloidal particles for studies of dissipative processes, providing insight into soft matter physics, and leading to applications from energy harvesting to medical imaging. Here we use optically levitated nanospheres that are heated to investigate the non-equilibrium properties of the gas surrounding them. Analysing the sphere's Brownian motion allows us to determine the temperature of the centre-of-mass motion of the sphere, its surface temperature and the heated gas temperature in two spatial dimensions. We observe asymmetric heating of the sphere and gas, with temperatures reaching the melting point of the material. This method offers new opportunities for accurate temperature measurements with spatial resolution on the nanoscale, and a new means for testing non-equilibrium thermodynamicsComment: 5 pages, 4 figures, supplementary material available upon reques

    Susceptibility profiles of helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) to deltamethrin reveal a contrast between the northern and the southern Benin

    Get PDF
    Open Access Journal; Published online: 28 May 2019Helicoverpa armigera is an indigenous species in Africa and has been reported in the destruction of several crops in Benin. Management of H. armigera pest is mainly focused on the use of synthetic pyrethroids, which may contribute to resistance selection. This study aimed to screen the susceptibility pattern of field populations of H. armigera to deltamethrin in Benin. Relevant information on the type of pesticides used by farmers were gathered through surveys. Collected samples of Helicoverpa (F0) were reared to F1. F0 were subjected to morphological speciation followed by a confirmation using restriction fragment length polymorphism coupled with a polymerase chain reaction (RFLP-PCR). F1 (larvae) were used for insecticide susceptibility with deltamethrin alone and in the presence of the P450 inhibitor Piperonyl Butoxide (PBO). Deltamethrin and lambda-cyhalothrin were the most used pyrethroids in tomato and cotton farms respectively. All field-sampled Helicoverpa were found to be H. armigera. Susceptibility assays of H. armigera to deltamethrin revealed a high resistance pattern in cowpea (resistance factor (RF) = 2340), cotton (RF varying from 12 to 516) and tomato (RF=85) farms which is a concern for the control of this major polyphagous agricultural pest. There was a significant increase of mortality when deltamethrin insecticide was combined with piperonyl butoxide (PBO), suggesting the possible involvement of detoxification enzymes such as oxidase. This study highlights the presence of P450 induced metabolic resistance in H. armigera populations from diverse cropping systems in Benin. The recorded high levels of deltamethrin resistance in H. armigera is a concern for the control of this major agricultural pest in Benin as the country is currently embarking into economical expansion of cotton, vegetables and grain-legumes cropping systems

    PEG–Polypeptide Block Copolymers as pH-Responsive Endosome-Solubilizing Drug Nanocarriers

    Get PDF
    Herein we report the potential of click chemistry-modified polypeptide-based block copolymers for the facile fabrication of pH-sensitive nanoscale drug delivery systems. PEG–polypeptide copolymers with pendant amine chains were synthesized by combining N-carboxyanhydride-based ring-opening polymerization with post-functionalization using azide–alkyne cycloaddition. The synthesized block copolymers contain a polypeptide block with amine-functional side groups and were found to self-assemble into stable polymersomes and disassemble in a pH-responsive manner under a range of biologically relevant conditions. The self-assembly of these block copolymers yields nanometer-scale vesicular structures that are able to encapsulate hydrophilic cytotoxic agents like doxorubicin at physiological pH but that fall apart spontaneously at endosomal pH levels after cellular uptake. When drug-encapsulated copolymer assemblies were delivered systemically, significant levels of tumor accumulation were achieved, with efficacy against the triple-negative breast cancer cell line, MDA-MB-468, and suppression of tumor growth in an in vivo mouse model.Novartis Institutes of Biomedical ResearchNational Institutes of Health (U.S.) (Centers for Cancer Nanotechnology Excellence Grant P30 CA14051)National Institutes of Health (U.S.) (Centers for Cancer Nanotechnology Excellence Grant 5 U54 CA151884-02)National Science Foundation (U.S.). Graduate Research FellowshipNatural Sciences and Engineering Research Council of Canada (Postdoctoral Fellowship
    corecore