55 research outputs found
The FLASSH study: protocol for a randomised controlled trial evaluating falls prevention after stroke and two sub-studies
This randomised controlled trial aims to evaluate the effectiveness of a multi-factorial falls prevention program for stroke survivors who are at high risk of falling when they return home after rehabilitation. Intervention will consist of a home exercise program as well as individualised falls prevention and injury minimisation strategies based on identified risk factors for falls. Additionally, two sub-studies will be implemented in order to explore other key areas related to falls in this population. The first of these is a longitudinal study evaluating the relationship between fear of falling, falls and function over twelve months, and the second evaluates residual impairment in gait stability and obstacle crossing twelve months after discharge from rehabilitation
Metal organic framework nanosheets in polymer composite materials for gas separation
[EN] Composites incorporating two-dimensional nanostructures within polymeric matrices have potential as functional components for several technologies, including gas separation. Prospectively, employing metal-organic frameworks (MOFs) as versatile nanofillers would notably broaden the scope of functionalities. However, synthesizing MOFs in the form of freestanding nanosheets has proved challenging. We present a bottom-up synthesis strategy for dispersible copper 1,4-benzenedicarboxylate MOF lamellae of micrometre lateral dimensions and nanometre thickness. Incorporating MOF nanosheets into polymer matrices endows the resultant composites with outstanding CO2 separation performance from CO2/CH4 gas mixtures, together with an unusual and highly desired increase in the separation selectivity with pressure. As revealed by tomographic focused ion beam scanning electron microscopy, the unique separation behaviour stems from a superior occupation of the membrane cross-section by the MOF nanosheets as compared with isotropic crystals, which improves the efficiency of molecular discrimination and eliminates unselective permeation pathways. This approach opens the door to ultrathin MOF-polymer composites for various applications.The research leading to these results has received funding (J.G., B.S.) from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement no. 335746, CrystEng-MOF-MMM. T.R. is grateful to TUDelft for funding. G.P. acknowledges the A. von Humboldt Foundation for a research grant. A.C., I.L. and F.X.L.i.X. thank Consolider-Ingenio 2010 (project MULTICAT) and the ‘Severo Ochoa’ programme for support. I.L. also thanks CSIC for a JAE doctoral grant.Ródenas Torralba, T.; Luz MÃnguez, I.; Prieto González, G.; Seoane, B.; Miro, H.; Corma Canós, A.; Kapteijn, F.... (2015). Metal organic framework nanosheets in polymer composite materials for gas separation. Nature Materials. 14(1):48-55. https://doi.org/10.1038/nmat4113S4855141Stankovich, S. et al. Graphene-based composite materials. Nature 442, 282–286 (2006).Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotech. 7, 699–712 (2012).Choi, S. et al. Layered silicates by swelling of AMH-3 and nanocomposite membranes. Angew. Chem. Int. Ed. 47, 552–555 (2008).Varoon, K. et al. Dispersible exfoliated zeolite nanosheets and their application as a selective membrane. Science 334, 72–75 (2011).Corma, A., Fornes, V., Pergher, S. B., Maesen, Th. L. M. & Buglass, J. G. Delaminated zeolite precursors as selective acidic catalysts. Nature 396, 353–356 (1998).Hernandez, Y. et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nature Nanotech. 3, 563–568 (2008).Li, P-Z., Maeda, Y. & Xu, Q. Top-down fabrication of crystalline metal-organic framework nanosheets. Chem. Commun. 47, 8436–8438 (2011).Choi, M. et al. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature 461, 246–249 (2009).Hu, G., Wang, N., O’Hare, D. & Davis, J. One-step synthesis and AFM imaging of hydrophobic LDH monolayers. Chem. Commun. 287–289 (2006).Yamamoto, K., Sakata, Y., Nohara, Y., Takahashi, Y. & Tatsumi, T. Organic-inorganic hybrid zeolites containing organic frameworks. Science 300, 470–472 (2003).Yaghi, O. M. et al. Reticular synthesis and the design of new materials. Nature 423, 705–714 (2003).Férey, G. Hybrid porous solids: Past, present, future. Chem. Soc. Rev. 37, 191–214 (2008).Gücüyener, C., Bergh, J., Gascon, J. & Kapteijn, F. Ethane/ethene separation turned on its head: Selective ethane adsorption on the metal-organic framework ZIF-7 through a gate-opening mechanism. J. Am. Chem. Soc. 132, 17704–17706 (2010).Deng, H. et al. Multiple functional groups of varying ratios in metal-organic frameworks. Science 12, 846–850 (2010).Khaletskaya, K. et al. Integration of porous coordination polymers and gold nanorods into core-shell mesoscopic composites toward light-induced molecular release. J. Am. Chem. Soc. 135, 10998–11005 (2013).Corma, A., Garcia, H. & Llabrés i Xamena, F. X. Engineering metal organic frameworks for heterogeneous catalysis. Chem. Rev. 110, 4606–4655 (2010).Mueller, U. et al. Metal-organic frameworks-prospective industrial applications. J. Mater. Chem. 16, 626–636 (2006).Gascon, J. & Kapteijn, F. Metal-organic framework membranes-high potential, bright future? Angew. Chem. Int. Ed. 49, 1530–1532 (2010).Li, Y. S. et al. Controllable synthesis of metal-organic frameworks: From MOF nanorods to oriented MOF membranes. Adv. Mater. 22, 3322–3326 (2010).Gascon, J. et al. Practical approach to zeolitic membranes and coatings: State of the art, opportunities, barriers, and future perspectives. Chem. Mater. 24, 2829–2844 (2012).Bae, T-H. et al. A high-performance gas-separation membrane containing submicrometer-sized metal-organic framework crystals. Angew. Chem. Int. Ed. 49, 9863–9866 (2010).Zornoza, B. et al. Functionalized flexible MOFs as fillers in mixed matrix membranes for highly selective separation of CO2 from CH4 at elevated pressures. Chem. Commun. 47, 9522–9524 (2011).Zornoza, B., Tellez, C., Coronas, J., Gascon, J. & Kapteijn, F. Metal organic frameworks based mixed matrix membranes: An increasingly important field of research with a large application potential. Microp. Mesop. Mater. 166, 67–78 (2013).Zhang, C., Dai, Y., Johnson, J. R., Karvan, O. & Koros, W. High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separations. J. Mem. Sci. 389, 34–42 (2012).Li, T., Pan, Y., Peinemann, K-V. & Lai, Z. Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano-fillers. J. Mem. Sci. 425–426, 235–242 (2013).Makiura, R. et al. Surface nano-architecture of a metal-organic framework. Nature Mater. 9, 565–571 (2010).Mori, W. et al. Synthesis of new adsorbent copper(II) terephthalate. Chem. Lett. 26, 1219–1220 (1997).Xin, Z., Bai, J., Shen, Y. & Pan, Y. Hierarchically micro- and mesoporous coordination polymer nanostructures with high adsorption performance. Cryst. Growth Des. 10, 2451–2454 (2010).Adams, R., Carson, C., Ward, J., Tannenbaum, R. & Koros, W. Metal organic framework mixed matrix membranes for gas separations. Micropor. Mesopor. Mater. 131, 13–20 (2010).Carson, C. G. et al. Synthesis and structure characterization of copper terephthalate metal-organic framework. Eur. J. Inorg. Chem. 2009, 2338–2343 (2009).Ameloot, R. et al. Interfacial synthesis of hollow metal-organic framework capsules demonstrating selective permeability. Nature Chem. 3, 382–387 (2011).Chen, Z. et al. Microporous metal-organic framework with immobilized -OH functional groups within the pore surfaces for selective gas sorption. Eur. J. Inorg. Chem. 2010, 3745–3749 (2010).Karra, J. R. & Walton, K. S. Molecular simulations and experimental studies of CO2, CO, and N2 adsorption in metal-organic frameworks. J. Phys. Chem. C 114, 15735–15740 (2010).Liu, J., Thallapally, P. K., McGrail, B. P., Brown, D. R. & Liu, J. Progress in adsorption-based CO2 capture by metal-organic frameworks. Chem. Soc. Rev. 41, 2308–2322 (2012).Seki, K., Takamizawa, S. & Mori, W. Characterization of microporous copper(II) dicarboxylates (fumarate, terephthalate, and trans-1,4-cyclohexanedicarboxylate) by gas adsorption. Chem. Lett. 30, 122–123 (2001).Carson, C. G. et al. Structure solution from powder diffraction of copper 1,4-benzenedicarboxylate. Eur. J. Inorg. Chem. 2014, 2140–2145 (2014).Corma, A., Diaz, U., Domine, M. E. & Fornes, V. AlITQ-6 and TiITQ-6: Synthesis, characterization, and catalytic activity. Angew. Chem. Int. Ed. 39, 1499–1501 (2000).Corma, A., Fornes, V. & Diaz, U. ITQ-18 a new delaminated stable zeolite. Chem. Commun. 2642–2643 (2001).Rouquerol, F., Rouquerol, J. & Sing, K. Adsorption by Powders and Porous Solids (Academic, 1999).Dubinin, M. M. The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces. Chem. Rev. 60, 235–241 (1960).Uchic, M. D., Holzer, L., Inkson, B. J., Principe, E. L. & Munroe, P. Three-dimensional microstructural characterization using focused ion beam tomography. Mater. Res. Soc. Bull. 32, 408–416 (2007).Rodenas, T. et al. Visualizing MOF mixed matrix membranes at the nanoscale: Towards structure-performance relationships in CO2/CH4 separation over NH2-MIL-53(Al)@PI. Adv. Funct. Mater. 24, 249–256 (2013).Wang, X. et al. Unusual rheological behaviour of liquid polybutadiene rubber/clay nanocomposite gels: The role of polymer-clay interaction, clay exfoliation, and clay orientation and disorientation. Macromology 39, 6653–6660 (2006).Yang, Y. et al. Progress in carbon dioxide separation and capture: A review. J. Environ. Sci. 20, 14–27 (2008).Yeo, Z. Y., Chew, T. L., Zhu, P. W., Mohamed, A. R. & Chai, S-P. Conventional processes and membrane technology for carbon dioxide removal from natural gas: A review. J. Nature Gas Chem. 21, 282–298 (2012).McKeown, N. B. & Budd, P. M. Polymers of intrinsic microporosity (PIMs): Organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. Chem. Soc. Rev. 35, 675–683 (2006).Vinh-Thang, H. & Kaliaguine, S. Predictive models for mixed-matrix membrane performance: A review. Chem. Rev. 113, 4980–5028 (2013)
Crystal formation and size control of zeolitic imidazolate frameworks with mixed imidazolate linkers
High flux high-silica SSZ-13 membrane for CO2 separation
High-silica (gel Si/Al = 100) SSZ-13 membranes were prepared by hydrothermal secondary growth on the surface of a-alumina hollow fiber supports. The membranes were evaluated for their performance in the separation of CO2 from equimolar mixtures with CH4 or N2. The maximum CO2–CH4 and CO2–N2 separation selectivities were found to be 42 and 12 respectively, with a high CO2 permeance of 3.0 × 10-7 mol m2 s-1 Pa-1 at 293 K and total feed pressure of 0.6 MPa. At the low aluminum content, the prepared membranes contain a very low number of defects, as follows from their H2/SF6 ideal selectivity of over 500 in the 293–473 K temperature range. Due to their hydrophobicity, water in the feed mixture has only a small influence on the permeance at temperatures above 353 K. Water improves the CO2–N2 and CO2–CH4 selectivity, which is attributed to preferential blocking of the hydrophilic, non-zeolitic defect pores. The hydrothermal stability of the high-silica SSZ-13 membrane was evaluated by a long (220 h) CO2–N2 separation test with a humidified (9.5 kPa H2O) feed mixture at 393 K and 0.6 MPa feed pressure. The permeance and selectivity were stable during this endurance test, underpinning the promise of high-silica SSZ-13 membranes for application in the separation of hot and humid gas mixtures
- …