16 research outputs found

    Dynamic redistribution of raft domains as an organizing platform for signaling during cell chemotaxis

    Get PDF
    Spatially restricted activation of signaling molecules governs critical aspects of cell migration; the mechanism by which this is achieved nonetheless remains unknown. Using time-lapse confocal microscopy, we analyzed dynamic redistribution of lipid rafts in chemoattractant-stimulated leukocytes expressing glycosyl phosphatidylinositol–anchored green fluorescent protein (GFP-GPI). Chemoattractants induced persistent GFP-GPI redistribution to the leading edge raft (L raft) and uropod rafts of Jurkat, HL60, and dimethyl sulfoxide–differentiated HL60 cells in a pertussis toxin–sensitive, actin-dependent manner. A transmembrane, nonraft GFP protein was distributed homogeneously in moving cells. A GFP-CCR5 chimera, which partitions in L rafts, accumulated at the leading edge, and CCR5 redistribution coincided with recruitment and activation of phosphatidylinositol-3 kinase γ in L rafts in polarized, moving cells. Membrane cholesterol depletion impeded raft redistribution and asymmetric recruitment of PI3K to the cell side facing the chemoattractant source. This is the first direct evidence that lipid rafts order spatial signaling in moving mammalian cells, by concentrating the gradient sensing machinery at the leading edge

    Blocking of HIV-1 Infection by Targeting CD4 to Nonraft Membrane Domains

    Get PDF
    Human immunodeficiency virus (HIV)-1 infection depends on multiple lateral interactions between the viral envelope and host cell receptors. Previous studies have suggested that these interactions are possible because HIV-1 receptors CD4, CXCR4, and CCR5 partition in cholesterol-enriched membrane raft domains. We generated CD4 partitioning mutants by substituting or deleting CD4 transmembrane and cytoplasmic domains and the CD4 ectodomain was unaltered. We report that all CD4 mutants that retain raft partitioning mediate HIV-1 entry and CD4-induced Lck activation independently of their transmembrane and cytoplasmic domains. Conversely, CD4 ectodomain targeting to a nonraft membrane fraction results in a CD4 receptor with severely diminished capacity to mediate Lck activation or HIV-1 entry, although this mutant binds gp120 as well as CD4wt. In addition, the nonraft CD4 mutant inhibits HIV-1 X4 and R5 entry in a CD4+ cell line. These results not only indicate that HIV-1 exploits host membrane raft domains as cell entry sites, but also suggest new strategies for preventing HIV-1 infection

    Flotillins Interact with PSGL-1 in Neutrophils and, upon Stimulation, Rapidly Organize into Membrane Domains Subsequently Accumulating in the Uropod

    Get PDF
    BACKGROUND: Neutrophils polarize and migrate in response to chemokines. Different types of membrane microdomains (rafts) have been postulated to be present in rear and front of polarized leukocytes and disruption of rafts by cholesterol sequestration prevents leukocyte polarization. Reggie/flotillin-1 and -2 are two highly homologous proteins that are ubiquitously enriched in detergent resistant membranes and are thought to shape membrane microdomains by forming homo- and hetero-oligomers. It was the goal of this study to investigate dynamic membrane microdomain reorganization during neutrophil activation. METHODOLOGY/PRINCIPAL FINDINGS: We show now, using immunofluorescence staining and co-immunoprecipitation, that endogenous flotillin-1 and -2 colocalize and associate in resting spherical and polarized primary neutrophils. Flotillins redistribute very early after chemoattractant stimulation, and form distinct caps in more than 90% of the neutrophils. At later time points flotillins accumulate in the uropod of polarized cells. Chemotactic peptide-induced redistribution and capping of flotillins requires integrity and dynamics of the actin cytoskeleton, but does not involve Rho-kinase dependent signaling related to formation of the uropod. Both flotillin isoforms are involved in the formation of this membrane domain, as uropod location of exogenously expressed flotillins is dramatically enhanced by co-overexpression of tagged flotillin-1 and -2 in differentiated HL-60 cells as compared to cells expressing only one tagged isoform. Flotillin-1 and -2 associate with P-selectin glycoprotein ligand 1 (PSGL-1) in resting and in stimulated neutrophils as shown by colocalization and co-immunoprecipitation. Neutrophils isolated from PSGL-1-deficient mice exhibit flotillin caps to the same extent as cells isolated from wild type animals, implying that PSGL-1 is not required for the formation of the flotillin caps. Finally we show that stimulus-dependent redistribution of other uropod-located proteins, CD43 and ezrin/radixin/moesin, occurs much slower than that of flotillins and PSGL-1. CONCLUSIONS/SIGNIFICANCE: These results suggest that flotillin-rich actin-dependent membrane microdomains are importantly involved in neutrophil uropod formation and/or stabilization and organize uropod localization of PSGL-1

    Membrane raft microdomains mediate front-rear polarity in migrating cells.

    No full text
    The acquisition of spatial and functional asymmetry between the rear and the front of the cell is a necessary step for cell chemotaxis. Insulin-like growth factor-I (IGF-I) stimulation of the human adenocarcinoma MCF-7 induces a polarized phenotype characterized by asymmetrical CCR5 chemokine receptor redistribution to the leading cell edge. CCR5 associates with membrane raft microdomains, and its polarization parallels redistribution of raft molecules, including the raft-associated ganglioside GM1, glycosylphosphatidylinositol-anchored green fluorescent protein and ephrinB1, to the leading edge. The non-raft proteins transferrin receptor and a mutant ephrinB1 are distributed homogeneously in migrating MCF-7 cells, supporting the raft localization requirement for polarization. IGF-I stimulation of cholesterol-depleted cells induces projection of multiple pseudopodia over the entire cell periphery, indicating that raft disruption specifically affects the acquisition of cell polarity, but not IGF-I-induced protrusion activity. Cholesterol depletion inhibits MCF-7 chemotaxis, which is restored by replenishing cholesterol. Our results indicate that initial segregation between raft and non-raft membrane proteins mediates the necessary redistribution of specialized molecules for cell migration

    Filamin-A regulates actin-dependent clustering of HIV receptors

    No full text
    Human immunodeficiency virus (HIV)-1 infection requires envelope (Env) glycoprotein gp120-induced clustering of CD4 and coreceptors (CCR5 or CXCR4) on the cell surface; this enables Env gp41 activation and formation of a complex that mediates fusion between Env-containing and target-cell membranes. Kinetic studies show that viral receptors are actively transported to the Env-receptor interface in a process that depends on plasma membrane composition and the actin cytoskeleton. The mechanisms by which HIV-1 induces F-actin rearrangement in the target cell remain largely unknown. Here, we show that CD4 and the coreceptors interact with the actin-binding protein filamin-A, whose binding to HIV-1 receptors regulates their clustering on the cell surface. We found that gp120 binding to cell receptors induces transient cofilin-phosphorylation inactivation through a RhoA-ROCK-dependent mechanism. Blockade of filamin-A interaction with CD4 and/or coreceptors inhibits gp120-induced RhoA activation and cofilin inactivation. Our results thus identify filamin-A as an adaptor protein that links HIV-1 receptors to the actin cytoskeleton remodelling machinery, which may facilitate virus infectio

    Gangliosides of myelosupportive stroma cells are transferred to myeloid progenitors and are required for their survival and proliferation

    No full text
    In previous studies, we have shown that the myelopoiesis dependent upon myelosupportive stroma required production of growth factors and heparan-sulphate proteoglycans, as well as generation of a negatively charged sialidase-sensitive intercellular environment between the stroma and the myeloid progenitors. In the present study, we have investigated the production, distribution and role of gangliosides in an experimental model of in vitro myelopoiesis dependent upon AFT-024 murine liver-derived stroma. We used the FDC-P1 cell line, which is dependent upon GM-CSF (granulocyte/macrophage colony-stimulating factor) for both survival and proliferation, as a reporter system to monitor bioavailability and local activity of GM-CSF. G(M3) was the major ganglioside produced by stroma, but not by myeloid cells, and it was required for optimal stroma myelosupportive function. It was released into the supernatant and selectively incorporated into the myeloid progenitor cells, where it segregated into rafts in which it co-localized with the GM-CSF-receptor α chain. This ganglioside was also metabolized further by myeloid cells into gangliosides of the a and b series, similar to endogenous G(M3). In these cells, G(M1) was the major ganglioside and it was segregated at the interface by stroma and myeloid cells, partially co-localizing with the GM-CSF-receptor α chain. We conclude that myelosupportive stroma cells produce and secrete the required growth factors, the cofactors such as heparan sulphate proteoglycans, and also supply gangliosides that are transferred from stroma to target cells, generating on the latter ones specific membrane domains with molecular complexes that include growth factor receptors

    T cell costimulation by chemokine receptors

    No full text
    Signals mediated by chemokine receptors may compete with T cell receptor stop signals and determine the duration of T cell-antigen-presenting cell interactions. Here we show that during T cell stimulation by antigen-presenting cells, T cell chemokine receptors coupled to G(q) and/or G(11) protein were recruited to the immunological synapse by a G(i)-independent mechanism. When chemokine receptors were sequestered at the immunological synapse, T cells became insensitive to chemotactic gradients, formed more stable conjugates and finally responded with enhanced proliferation and cytokine production. We suggest that chemokine receptor trapping at the immunological synapse enhances T cell activation by improving T cell-antigen-presenting cell attraction and impeding the 'distraction' of successfully engaged T cells by other chemokine source
    corecore