370 research outputs found

    Raman spectroscopy of iodine-doped double-walled carbon nanotubes

    Get PDF
    We present a Raman spectroscopy study of iodine-intercalated (p-type-doped) double-walled carbon nanotubes. Double-walled carbon nanotubes (DWCNTs) are synthesized by catalytic chemical vapor deposition and characterized by Raman spectroscopy. The assignment of the radial breathing modes and the tangential modes of pristine DWCNTs is done in the framework of the bond polarization theory, using the spectral moment method. The changes in the Raman spectrum upon iodine doping are analyzed. Poly-iodine anions are identi- fied, and the Raman spectra reveal that the charge transfer between iodine and DWCNTs only involves the outer tubes

    Carbon nanotubes induce inflammation but decrease the production of reactive oxygen species in lung

    Get PDF
    With the rapid spread of carbon nanotubes (CNTs) applications, the respiratory toxicity of these compounds has attracted the attention of many scientists. Several studies have reported that after lung administration, CNTs could induce granuloma, fibrosis, or inflammation. By comparison with the mechanisms involved with other toxic particles such as asbestos, this effect could be attributed to an increase of oxidative stress. The aim of the present work was to test this hypothesis in vivo. Mice were intranasally instilled with 1.5 mg/kg of double walled carbon nanotubes (DWCNTs). Six, 24, or 48 h after administration, inflammation and localisation of DWCNTs in lungs were microscopically observed. Local oxidative perturbations were investigated using ESR spin trapping experiments, and systemic inflammation was assessed by measuring the plasma concentration of cytokines TNF-α, IL-1α, IL-1β, IL-6, IGF-1, Leptin, G-CSF, and VEGF. Examination of lungs and the elevation of proinflammatory cytokines in the plasma (Leptin and IL-6 at 6 h) confirmed the induction of an inflammatory reaction. This inflammatory reaction was accompanied by a decrease in the local oxidative stress. This effect could be attributed to the scavenger capability of pure CNTs

    Assessment of the potential in vivo ecotoxicity of Double-Walled Carbon Nanotubes (DWNTs) in water, using the amphibian Ambystoma mexicanum

    Get PDF
    Because of their specific properties (mechanical, electrical, etc), carbon nanotubes (CNTs) are being assessed for inclusion in many manufactured products. Due to their massive production and number of potential applications, the impact of CNTs on the environment must be taken into consideration. The present investigation evaluates the ecotoxic potential of CNTs in the amphibian larvae (Ambystoma mexicanum). Acute toxicity and genotoxicity were analysed after 12 days of exposure in laboratory conditions. The genotoxic effects were analysed by scoring the micronucleated erythrocytes in the circulating blood of the larvae according to the French standard micronucleus assay. The results obtained in the present study demonstrated that CNTs are neither acutely toxic nor genotoxic to larvae whatever the CNTs concentration in the water, although black masses of CNTs were observed inside the gut. In the increasing economical context of CNTs, complementary studies must be undertaken, especially including mechanistic and environmental investigations

    Pressure dependence of Raman modes in double wall carbon nanotubes filled with α-Fe.

    Get PDF
    The preparation of highly anisotropic one-dimensional (1D) structures confined into carbon nanotubes (CNTs) in general is a key objective in CNTs research. In this work, the capillary effect was used to fill double wall carbon nanotubes with iron. The samples are characterized by Mössbauer and Raman spectroscopy, transmission electron microscopy, scanning area electron diffraction, and magnetization. In order to investigate their structural stability and compare it with that of single wall carbon nanotubes (SWNTs), elucidating the differences induced by the inner-outer tube interaction, unpolarized Raman spectra of tangential modes of double wall carbon nanotubes (DWNTs) filled with 1D nanocrystallin α-Fe excited with 514 nm were studied at room temperature and elevated pressure. Up to 16 GPa we find a pressure coefficient for the internal tube of 4.3 cm−1 GPa−1 and for the external tube of 5.5 cm−1 GPa−1. In addition, the tangential band of the external and internal tubes broadens and decreases in amplitude. All findings lead to the conclusion that the outer tube acts as a protection shield for the inner tubes (at least up 16 GPa). Structural phase transitions were not observed in this range of pressure

    Valence, spin, and orbital state of the Co ions in the one-dimensional Ca3Co2O6: an x-ray absorption and magnetic circular dichroism study

    Get PDF
    We have investigated the valence, spin, and orbital state of the Co ions in the one-dimensional cobaltate Ca3Co2O6 using x-ray absorption and x-ray magnetic circular dichroism at the Co-L2,3 edges. The Co ions at both the octahedral Co_oct and trigonal Co_trig sites are found to be in a 3+ state. From the analysis of the dichroism we established a low-spin state for the Co_oct and a high-spin state with an anomalously large orbital moment of 1.7 muB at the Co3+ trig ions. This large orbital moment along the c-axis chain and the unusually large magnetocrystalline anisotropy can be traced back to the double occupancy of the d2 orbital in trigonal crystal field.Comment: 5 pages, 4 figure

    Fe/Co Alloys for the Catalytic Chemical Vapor Deposition Synthesis of Single- and Double-Walled Carbon Nanotubes (CNTs). 1. The CNT−Fe/Co−MgO System

    Get PDF
    Mg0.90FexCoyO (x + y ) 0.1) solid solutions were synthesized by the ureic combustion route. Upon reduction at 1000 °C in H2-CH4 of these powders, Fe/Co alloy nanoparticles are formed, which are involved in the formation of carbon nanotubes, which are mostly single and double walled, with an average diameter close to 2.5 nm. Characterizations of the materials are performed using 57Fe Mo¨ssbauer spectroscopy and electron microscopy, and a well-established macroscopic method, based on specific-surface-area measurements, was applied to quantify the carbon quality and the nanotubes quantity. A detailed investigation of the Fe/Co alloys’ formation and composition is reported. An increasing fraction of Co2+ ions hinders the dissolution of iron in the MgO lattice and favors the formation of MgFe2O4-like particles in the oxide powders. Upon reduction, these particles form R-Fe/Co particles with a size and composition (close to Fe0.50Co0.50) adequate for the increased production of carbon nanotubes. However, larger particles are also produced resulting in the formation of undesirable carbon species. The highest CNT quantity and carbon quality are eventually obtained upon reduction of the iron-free Mg0.90Co0.10O solid solution, in the absence of clusters of metal ions in the starting material. Introduction Catalyti

    A Study of the Formation of Single- and Double-Walled Carbon Nanotubes by a CVD Method

    Get PDF
    The reduction in H2/CH4 atmosphere of aluminum-iron oxides produces metal particles small enough to catalyze the formation of single-walled carbon nanotubes. Several experiments have been made using the same temperature profile and changing only the maximum temperature (800-1070 °C). Characterizations of the catalyst materials are performed using notably 57Fe Mo¨ssbauer spectroscopy. Electron microscopy and a macroscopical method are used to characterize the nanotubes. The nature of the iron species (Fe3+, R-Fe, ç-Fe-C, Fe3C) is correlated to their location in the material. The nature of the particles responsible for the high-temperature formation of the nanotubes is probably an Fe-C alloy which is, however, found as Fe3C by postreaction analysis. Increasing the reduction temperature increases the reduction yield and thus favors the formation of surface-metal particles, thus producing more nanotubes. The obtained carbon nanotubes are mostly single-walled and double-walled with an average diameter close to 2.5 nm. Several formation mechanisms are thought to be active. In particular, it is shown that the second wall can grow inside the first one but that subsequent ones are formed outside. It is also possible that under given experimental conditions, the smallest (<2 nm) catalyst particles preferentially produce double-walled rather than single-walled carbon nanotubes
    corecore