315 research outputs found

    The pigmented life of a redhead.

    Get PDF
    As a redhead I have had a personal interest in red hair, freckles and sunburns since childhood. An observation of a formaldehyde-induced fluorescence in human epidermal melanocytes initiated my scientific interest in these cells. Prota and Nicolaus demonstrated that oxidation products of cysteinyldopas are the main components of pheomelanin. Our identification of 5-S-cysteinyldopa as the source of formaldehyde-induced fluorescence of normal and pathological melanocytes started a series of investigations into this amino acid, enzymatic and non-enzymatic oxidation of catecholic compounds and the metabolism of thiols. All melanocytes with functioning tyrosinase produce cysteinyldopas and the levels of 5-S-cysteinyldopa in serum and urine are related to the size and pigment forming activity of the melanocyte population. The determination of 5-S-cysteinyldopa in serum or urine is a sensitive diagnostic method in the detection of melanoma metastasis. Some non-specific formation of cysteinyldopa is present in the body, as demonstrated by 5-S-cysteinyldopa in individuals with tyrosinase-negative albinism

    Epstein Barr Virus-Encoded EBNA1 Interference with MHC Class I Antigen Presentation Reveals a Close Correlation between mRNA Translation Initiation and Antigen Presentation

    Get PDF
    Viruses are known to employ different strategies to manipulate the major histocompatibility (MHC) class I antigen presentation pathway to avoid recognition of the infected host cell by the immune system. However, viral control of antigen presentation via the processes that supply and select antigenic peptide precursors is yet relatively unknown. The Epstein-Barr virus (EBV)-encoded EBNA1 is expressed in all EBV-infected cells, but the immune system fails to detect and destroy EBV-carrying host cells. This immune evasion has been attributed to the capacity of a Gly-Ala repeat (GAr) within EBNA1 to inhibit MHC class I restricted antigen presentation. Here we demonstrate that suppression of mRNA translation initiation by the GAr in cis is sufficient and necessary to prevent presentation of antigenic peptides from mRNAs to which it is fused. Furthermore, we demonstrate a direct correlation between the rate of translation initiation and MHC class I antigen presentation from a certain mRNA. These results support the idea that mRNAs, and not the encoded full length proteins, are used for MHC class I restricted immune surveillance. This offers an additional view on the role of virus-mediated control of mRNA translation initiation and of the mechanisms that control MHC class I restricted antigen presentation in general

    Vacuolar organization in the nodule parenchyma is important for the functioning of pea root nodules

    Get PDF
    Different models have been proposed to explain the operation of oxygen diffusion barrier in root nodules of leguminous plants. This barrier participates in protection of oxygen-sensitive nitrogenase, the key enzyme in nitrogen fixation, from inactivation. Details concerning structural and biochemical properties of the barrier are still lacking. Here, the properties of pea root nodule cortical cells were examined under normal conditions and after shoot removal. Microscopic observations, including neutral red staining and epifluorescence investigations, showed that the inner and outer nodule parenchyma cells exhibit different patterns of the central vacuole development. In opposition to the inner part, the outer parenchyma cells exhibited vacuolar shrinkage and formed cell wall infoldings. Shoot removal induced vacuolar shrinkage and formation of infoldings in the inner parenchyma and uninfected cells of the symbiotic tissue, as well. It is postulated that cells which possess shrinking vacuoles are sensitive to the external osmotic pressure. The cells can give an additional resistance to oxygen diffusion by release of water to the intercellular spaces

    CTCF Prevents the Epigenetic Drift of EBV Latency Promoter Qp

    Get PDF
    The establishment and maintenance of Epstein-Barr Virus (EBV) latent infection requires distinct viral gene expression programs. These gene expression programs, termed latency types, are determined largely by promoter selection, and controlled through the interplay between cell-type specific transcription factors, chromatin structure, and epigenetic modifications. We used a genome-wide chromatin-immunoprecipitation (ChIP) assay to identify epigenetic modifications that correlate with different latency types. We found that the chromatin insulator protein CTCF binds at several key regulatory nodes in the EBV genome and may compartmentalize epigenetic modifications across the viral genome. Highly enriched CTCF binding sites were identified at the promoter regions upstream of Cp, Wp, EBERs, and Qp. Since Qp is essential for long-term maintenance of viral genomes in type I latency and epithelial cell infections, we focused on the role of CTCF in regulating Qp. Purified CTCF bound ∼40 bp upstream of the EBNA1 binding sites located at +10 bp relative to the transcriptional initiation site at Qp. Mutagenesis of the CTCF binding site in EBV bacmids resulted in a decrease in the recovery of stable hygromycin-resistant episomes in 293 cells. EBV lacking the Qp CTCF site showed a decrease in Qp transcription initiation and a corresponding increase in Cp and Fp promoter utilization at 8 weeks post-transfection. However, by 16 weeks post-transfection, bacmids lacking CTCF sites had no detectable Qp transcription and showed high levels of histone H3 K9 methylation and CpG DNA methylation at the Qp initiation site. These findings provide direct genetic evidence that CTCF functions as a chromatin insulator that prevents the promiscuous transcription of surrounding genes and blocks the epigenetic silencing of an essential promoter, Qp, during EBV latent infection

    Designing Focused Chemical Libraries Enriched in Protein-Protein Interaction Inhibitors using Machine-Learning Methods

    Get PDF
    Protein-protein interactions (PPIs) may represent one of the next major classes of therapeutic targets. So far, only a minute fraction of the estimated 650,000 PPIs that comprise the human interactome are known with a tiny number of complexes being drugged. Such intricate biological systems cannot be cost-efficiently tackled using conventional high-throughput screening methods. Rather, time has come for designing new strategies that will maximize the chance for hit identification through a rationalization of the PPI inhibitor chemical space and the design of PPI-focused compound libraries (global or target-specific). Here, we train machine-learning-based models, mainly decision trees, using a dataset of known PPI inhibitors and of regular drugs in order to determine a global physico-chemical profile for putative PPI inhibitors. This statistical analysis unravels two important molecular descriptors for PPI inhibitors characterizing specific molecular shapes and the presence of a privileged number of aromatic bonds. The best model has been transposed into a computer program, PPI-HitProfiler, that can output from any drug-like compound collection a focused chemical library enriched in putative PPI inhibitors. Our PPI inhibitor profiler is challenged on the experimental screening results of 11 different PPIs among which the p53/MDM2 interaction screened within our own CDithem platform, that in addition to the validation of our concept led to the identification of 4 novel p53/MDM2 inhibitors. Collectively, our tool shows a robust behavior on the 11 experimental datasets by correctly profiling 70% of the experimentally identified hits while removing 52% of the inactive compounds from the initial compound collections. We strongly believe that this new tool can be used as a global PPI inhibitor profiler prior to screening assays to reduce the size of the compound collections to be experimentally screened while keeping most of the true PPI inhibitors. PPI-HitProfiler is freely available on request from our CDithem platform website, www.CDithem.com

    Targeting the cell cycle for cancer therapy

    Get PDF
    Most if not all neoplasias show a directly or indirectly deregulated cell cycle. Targeting its regulatory molecules, the cyclin-dependent kinases, as a therapeutic mode to develop new anticancer drugs, is being currently explored in both academia and pharmaceutical companies. The development of new compounds is being focused on the many features of the cell cycle with promising preclinical data in most fields. Moreover, a few compounds have entered clinical trials with excellent results maintaining the high hopes. Thus, although too early to provide a cell cycle target based new commercial drug, there is no doubt that it will be an excellent source of new anticancer compounds

    Epstein-Barr Virus-Encoded LMP1 Interacts with FGD4 to Activate Cdc42 and Thereby Promote Migration of Nasopharyngeal Carcinoma Cells

    Get PDF
    Epstein-Barr virus (EBV) is closely associated with nasopharyngeal carcinoma (NPC), a human malignancy notorious for its highly metastatic nature. Among EBV-encoded genes, latent membrane protein 1 (LMP1) is expressed in most NPC tissues and exerts oncogenicity by engaging multiple signaling pathways in a ligand-independent manner. LMP1 expression also results in actin cytoskeleton reorganization, which modulates cell morphology and cell motilityβ€” cellular process regulated by RhoGTPases, such as Cdc42. Despite the prominent association of Cdc42 activation with tumorigenesis, the molecular basis of Cdc42 activation by LMP1 in NPC cells remains to be elucidated. Here using GST-CBD (active Cdc42-binding domain) as bait in GST pull-down assays to precipitate active Cdc42 from cell lysates, we demonstrated that LMP1 acts through its transmembrane domains to preferentially induce Cdc42 activation in various types of epithelial cells, including NPC cells. Using RNA interference combined with re-introduction experiments, we identified FGD4 (FYVE, RhoGEF and PH domain containing 4) as the GEF (guanine nucleotide exchange factor) responsible for the activation of Cdc42 by LMP1. Serial deletion experiments and co-immunoprecipitation assays further revealed that ectopically expressed FGD4 modulated LMP1-mediated Cdc42 activation by interacting with LMP1. Moreover, LMP1, through its transmembrane domains, directly bound FGD4 and enhanced FGD4 activity toward Cdc42, leading to actin cytoskeleton rearrangement and increased motility of NPC cells. Depletion of FGD4 or Cdc42 significantly reduced (∼50%) the LMP1-stimulated cell motility, an effect that was partially reversed by expression of a constitutively active mutant of Cdc42. Finally, quantitative RT-PCR and immunohistochemistry analyses showed that FGD4 and LMP1 were expressed in NPC tissues, supporting the potential physiologically relevance of this mechanism in NPC. Collectively, our results not only uncover a novel mechanism underlying LMP1-mediated Cdc42 activation, namely LMP1 interaction with FGD4, but also functionally link FGD4 to NPC tumorigenesis
    • …
    corecore