301 research outputs found
ERL Scheme for Compton Polarised Positron Sources
International audienceOne of the main challenges for the future linear colliders projects (ILC and CLIC) is to design an efficient positron source taking into account the constraints imposed by the target heating. At present, different schemes have been analysed to produce high energy gammas and to convert them in an amorphous target. One of them considers the possibility to boost the energy of the backscattered photons of a laser pulse by Compton effect. This method is very attractive since the source is independent from the main Linac and since the photon helicity is conserved in Compton scattering and subsequently transferred to the produced pairs. This allows the physics experiments disposing of both positron and electron polarised sources. Different schemes have been proposed to provide the electron beam for the Compton collisions. taking into account the constraint imposed by the low value of the Thomson cross section. One of the explored possibilities is to design an ERL with relatively low repetition frequency, high charge per pulse and then to stack the produced positrons in an accumulation ring. Different considerations on this scheme will be illustrated and the main constraints discussed. MO6RFP06
Jasmonate promotes auxin-induced adventitious rooting in dark-grown Arabidopsis thaliana seedlings and stem thin cell layers by a cross-talk with ethylene signalling and a modulation of xylogenesis
Background: Adventitious roots (ARs) are often necessary for plant survival, and essential for successful micropropagation. In Arabidopsis thaliana dark-grown seedlings AR-formation occurs from the hypocotyl and is enhanced by application of indole-3-butyric acid (IBA) combined with kinetin (Kin). The same IBA + Kin-treatment induces AR-formation in thin cell layers (TCLs). Auxin is the main inducer of AR-formation and xylogenesis in numerous species and experimental systems. Xylogenesis is competitive to AR-formation in Arabidopsis hypocotyls and TCLs. Jasmonates (JAs) negatively affect AR-formation in de-etiolated Arabidopsis seedlings, but positively affect both AR-formation and xylogenesis in tobacco dark-grown IBA + Kin TCLs. In Arabidopsis the interplay between JAs and auxin in AR-formation vs xylogenesis needs investigation. In de-etiolated Arabidopsis seedlings, the Auxin Response Factors ARF6 and ARF8 positively regulate AR-formation and ARF17 negatively affects the process, but their role in xylogenesis is unknown. The cross-talk between auxin and ethylene (ET) is also important for AR-formation and xylogenesis, occurring through EIN3/EIL1 signalling pathway. EIN3/EIL1 is the direct link for JA and ET-signalling. The research investigated JA role on AR-formation and xylogenesis in Arabidopsis dark-grown seedlings and TCLs, and the relationship with ET and auxin. The JA-donor methyl-jasmonate (MeJA), and/or the ET precursor 1-aminocyclopropane-1-carboxylic acid were applied, and the response of mutants in JA-synthesis and -signalling, and ET-signalling investigated. Endogenous levels of auxin, JA and JA-related compounds, and ARF6, ARF8 and ARF17 expression were monitored. Results: MeJA, at 0.01 μM, enhances AR-formation, when combined with IBA + Kin, and the response of the early-JA-biosynthesis mutant dde2–2 and the JA-signalling mutant coi1–16 confirmed this result. JA levels early change during TCL-culture, and JA/JA-Ile is immunolocalized in AR-tips and xylogenic cells. The high AR-response of the late JA-biosynthesis mutant opr3 suggests a positive action also of 12-oxophytodienoic acid on AR-formation. The crosstalk between JA and ET-signalling by EIN3/EIL1 is critical for AR-formation, and involves a competitive modulation of xylogenesis. Xylogenesis is enhanced by a MeJA concentration repressing AR-formation, and is positively related to ARF17 expression. Conclusions: The JA concentration-dependent role on AR-formation and xylogenesis, and the interaction with ET opens the way to applications in the micropropagation of recalcitrant species
Cracking in asphalt materials
This chapter provides a comprehensive review of both laboratory characterization and modelling of bulk material fracture in asphalt mixtures. For the purpose of organization, this chapter is divided into a section on laboratory tests and a section on models. The laboratory characterization section is further subdivided on the basis of predominant loading conditions (monotonic vs. cyclic). The section on constitutive models is subdivided into two sections, the first one containing fracture mechanics based models for crack initiation and propagation that do not include material degradation due to cyclic loading conditions. The second section discusses phenomenological models that have been developed for crack growth through the use of dissipated energy and damage accumulation concepts. These latter models have the capability to simulate degradation of material capacity upon exceeding a threshold number of loading cycles.Peer ReviewedPostprint (author's final draft
Proceedings of the third French-Ukrainian workshop on the instrumentation developments for HEP
The reports collected in these proceedings have been presented in the third
French-Ukrainian workshop on the instrumentation developments for high-energy
physics held at LAL, Orsay on October 15-16. The workshop was conducted in the
scope of the IDEATE International Associated Laboratory (LIA). Joint
developments between French and Ukrainian laboratories and universities as well
as new proposals have been discussed. The main topics of the papers presented
in the Proceedings are developments for accelerator and beam monitoring,
detector developments, joint developments for large-scale high-energy and
astroparticle physics projects, medical applications.Comment: 3rd French-Ukrainian workshop on the instrumentation developments for
High Energy Physics, October 15-16, 2015, LAL, Orsay, France, 94 page
Clinical outcomes and safety of rituximab treatment for patients with systemic lupus erythematosus (SLE) - results from a nationwide cohort in Germany (GRAID)
Objective The objective of this article is to evaluate the safety and clinical outcome of rituximab treatment in systemic lupus erythematosus (SLE) patients refractory to standard of care therapy in a real-life setting in Germany.
Methods The GRAID registry included patients with different autoimmune diseases who were given off-label treatment with rituximab. Data on safety and clinical response were collected retrospectively. In SLE patients, clinical parameters included tender and swollen joint counts, fatigue, myalgia, general wellbeing, Raynaud’s and the SLEDAI index. Laboratory tests included dsDNA antibody titres, complement factors, hematologic parameters and proteinuria. Finally, the investigators rated their patients as non-, partial or complete responders based on clinical grounds.
Results Data from 85 SLE patients were collected, 69 female and 16 male, with a mean disease duration of 9.8 years. The mean follow-up period was 9.6 ± 7.4 months, resulting in 66.8 patient years of observation. A complete response was reported in 37 patients (46.8%), partial response in 27 (34.2%), no response in 15 (19.0%). On average, major clinical as well as laboratory efficacy parameters improved substantially, with the SLEDAI decreasing significantly from 12.2 to 3.3 points. Concerning safety, one infusion reaction leading to discontinuation of treatment occurred. Infections were reported with a rate of 19.5 (including six severe infections) per 100 patient years.
Conclusion With the restrictions of a retrospective data collection, the results of this study confirm data of other registries, which suggest a favourable benefit-risk ratio of rituximab in patients with treatment-refractory SLE
Positron sources using channeling: A promising device for linear colliders
The need of intense and bright positron sources for linear colliders has urged the researches on polarized and unpolarized positrons. For 20 years, continuous theoretical and experimental investigations on unpolarized positron sources using axially channelled electrons in aligned monocrystals have pointed to efficient solutions concerning not only the source intensity, but also the minimization of the deposited energy. Simulations using the channelling programme of V. Strakhovenko associated to GEANT4, provided a description of such sources composed of tungsten crystals as photon radiators and amorphous tungsten as converters, the so-called hybrid source; the incident electron energies are taken between 5 and 10 GeV. Here, some applications are shown for CLIC, for which this source is the baseline, and
also for ILC. The simulations are also concerning the test at KEK of such hybrid source, with a sweeping magnet separating the crystal radiator and an amorphous converter. Future developments on the simulation programme are also reported. The main issues for such sources are also analyzed
The Chromatin Remodeler SPLAYED Regulates Specific Stress Signaling Pathways
Organisms are continuously exposed to a myriad of environmental stresses. Central to an organism's survival is the ability to mount a robust transcriptional response to the imposed stress. An emerging mechanism of transcriptional control involves dynamic changes in chromatin structure. Alterations in chromatin structure are brought about by a number of different mechanisms, including chromatin modifications, which covalently modify histone proteins; incorporation of histone variants; and chromatin remodeling, which utilizes ATP hydrolysis to alter histone-DNA contacts. While considerable insight into the mechanisms of chromatin remodeling has been gained, the biological role of chromatin remodeling complexes beyond their function as regulators of cellular differentiation and development has remained poorly understood. Here, we provide genetic, biochemical, and biological evidence for the critical role of chromatin remodeling in mediating plant defense against specific biotic stresses. We found that the Arabidopsis SWI/SNF class chromatin remodeling ATPase SPLAYED (SYD) is required for the expression of selected genes downstream of the jasmonate (JA) and ethylene (ET) signaling pathways. SYD is also directly recruited to the promoters of several of these genes. Furthermore, we show that SYD is required for resistance against the necrotrophic pathogen Botrytis cinerea but not the biotrophic pathogen Pseudomonas syringae. These findings demonstrate not only that chromatin remodeling is required for selective pathogen resistance, but also that chromatin remodelers such as SYD can regulate specific pathways within biotic stress signaling networks
HE-LHC: The High-Energy Large Hadron Collider – Future Circular Collider Conceptual Design Report Volume 4
In response to the 2013 Update of the European Strategy for Particle Physics (EPPSU), the Future Circular Collider (FCC) study was launched as a world-wide international collaboration hosted by CERN. The FCC study covered an energy-frontier hadron collider (FCC-hh), a highest-luminosity high-energy lepton collider (FCC-ee), the corresponding 100 km tunnel infrastructure, as well as the physics opportunities of these two colliders, and a high-energy LHC, based on FCC-hh technology. This document constitutes the third volume of the FCC Conceptual Design Report, devoted to the hadron collider FCC-hh. It summarizes the FCC-hh physics discovery opportunities, presents the FCC-hh accelerator design, performance reach, and staged operation plan, discusses the underlying technologies, the civil engineering and technical infrastructure, and also sketches a possible implementation. Combining ingredients from the Large Hadron Collider (LHC), the high-luminosity LHC upgrade and adding novel technologies and approaches, the FCC-hh design aims at significantly extending the energy frontier to 100 TeV. Its unprecedented centre-of-mass collision energy will make the FCC-hh a unique instrument to explore physics beyond the Standard Model, offering great direct sensitivity to new physics and discoveries
- …