352 research outputs found

    African small mammals = Petits mammifĂšres africains

    Get PDF

    Characterisation of spatial network-like patterns from junctions' geometry

    Full text link
    We propose a new method for quantitative characterization of spatial network-like patterns with loops, such as surface fracture patterns, leaf vein networks and patterns of urban streets. Such patterns are not well characterized by purely topological estimators: also patterns that both look different and result from different morphogenetic processes can have similar topology. A local geometric cue -the angles formed by the different branches at junctions- can complement topological information and allow to quantify the large scale spatial coherence of the pattern. For patterns that grow over time, such as fracture lines on the surface of ceramics, the rank assigned by our method to each individual segment of the pattern approximates the order of appearance of that segment. We apply the method to various network-like patterns and we find a continuous but sharp dichotomy between two classes of spatial networks: hierarchical and homogeneous. The first class results from a sequential growth process and presents large scale organization, the latter presents local, but not global organization.Comment: version 2, 14 page

    Delay of Disorder by Diluted Polymers

    Full text link
    We study the effect of diluted flexible polymers on a disordered capillary wave state. The waves are generated at an interface of a dyed water sugar solution and a low viscous silicon oil. This allows for a quantitative measurement of the spatio-temporal Fourier spectrum. The primary pattern after the first bifurcation from the flat interface are squares. With increasing driving strength we observe a melting of the square pattern. It is replaced by a weak turbulent cascade. The addition of a small amount of polymers to the water layer does not affect the critical acceleration but shifts the disorder transition to higher driving strenghs and the short wave length - high frequency fluctuations are suppressed

    Potential energy curves and spin-orbit coupling of light alkali-heavy rare gas molecules

    Get PDF
    The potential energy curves of the X, A, and B states of alkali-rare gas diatomic molecules, MKr and MXe, are investigated for M = Li, Na, K. The molecular spin-orbit coefficients a(R) = 〈2Π 1/2|Ä€SO|2Π1/2〉 and b(R) = 〈2Π-1/2|Ä€SO| 2ÎŁ1/2〉 are calculated as a function the interatomic distance R. We show that a(R) increases and b(R) decreases as R decreases. This effect becomes less and less important as the mass of the alkali increases. A comparison of the rovibrational properties deduced from our calculations with experimental measurements recorded for NaKr and NaXe shows the quality of the calculation

    Heap Formation in Granular Media

    Full text link
    Using molecular dynamics (MD) simulations, we find the formation of heaps in a system of granular particles contained in a box with oscillating bottom and fixed sidewalls. The simulation includes the effect of static friction, which is found to be crucial in maintaining a stable heap. We also find another mechanism for heap formation in systems under constant vertical shear. In both systems, heaps are formed due to a net downward shear by the sidewalls. We discuss the origin of net downward shear for the vibration induced heap.Comment: 11 pages, 4 figures available upon request, Plain TeX, HLRZ-101/9

    Rigidity of escaping dynamics for transcendental entire functions

    Full text link
    We prove an analog of Boettcher's theorem for transcendental entire functions in the Eremenko-Lyubich class B. More precisely, let f and g be entire functions with bounded sets of singular values and suppose that f and g belong to the same parameter space (i.e., are *quasiconformally equivalent* in the sense of Eremenko and Lyubich). Then f and g are conjugate when restricted to the set of points which remain in some sufficiently small neighborhood of infinity under iteration. Furthermore, this conjugacy extends to a quasiconformal self-map of the plane. We also prove that this conjugacy is essentially unique. In particular, we show that an Eremenko-Lyubich class function f has no invariant line fields on its escaping set. Finally, we show that any two hyperbolic Eremenko-Lyubich class functions f and g which belong to the same parameter space are conjugate on their sets of escaping points.Comment: 28 pages; 2 figures. Final version (October 2008). Various modificiations were made, including the introduction of Proposition 3.6, which was not formally stated previously, and the inclusion of a new figure. No major changes otherwis

    Scarred Patterns in Surface Waves

    Full text link
    Surface wave patterns are investigated experimentally in a system geometry that has become a paradigm of quantum chaos: the stadium billiard. Linear waves in bounded geometries for which classical ray trajectories are chaotic are known to give rise to scarred patterns. Here, we utilize parametrically forced surface waves (Faraday waves), which become progressively nonlinear beyond the wave instability threshold, to investigate the subtle interplay between boundaries and nonlinearity. Only a subset (three main types) of the computed linear modes of the stadium are observed in a systematic scan. These correspond to modes in which the wave amplitudes are strongly enhanced along paths corresponding to certain periodic ray orbits. Many other modes are found to be suppressed, in general agreement with a prediction by Agam and Altshuler based on boundary dissipation and the Lyapunov exponent of the associated orbit. Spatially asymmetric or disordered (but time-independent) patterns are also found even near onset. As the driving acceleration is increased, the time-independent scarred patterns persist, but in some cases transitions between modes are noted. The onset of spatiotemporal chaos at higher forcing amplitude often involves a nonperiodic oscillation between spatially ordered and disordered states. We characterize this phenomenon using the concept of pattern entropy. The rate of change of the patterns is found to be reduced as the state passes temporarily near the ordered configurations of lower entropy. We also report complex but highly symmetric (time-independent) patterns far above onset in the regime that is normally chaotic.Comment: 9 pages, 10 figures (low resolution gif files). Updated and added references and text. For high resolution images: http://physics.clarku.edu/~akudrolli/stadium.htm

    Non-Gaussian Distributions in Extended Dynamical Systems

    Full text link
    We propose a novel mechanism for the origin of non-Gaussian tails in the probability distribution functions (PDFs) of local variables in nonlinear, diffusive, dynamical systems including passive scalars advected by chaotic velocity fields. Intermittent fluctuations on appropriate time scales in the amplitude of the (chaotic) noise can lead to exponential tails. We provide numerical evidence for such behavior in deterministic, discrete-time passive scalar models. Different possibilities for PDFs are also outlined.Comment: 12 pages and 6 figs obtainable from the authors, LaTex file, OSU-preprint-
    • 

    corecore