626 research outputs found

    Additively Manufactured Carbon Fiber- Reinforced Thermoplastic Composite Mold Plates For Injection Molding Process

    Get PDF
    Polymer injection molding processes have been used to create high-volume parts quickly and efficiently. Injection molding uses mold plates that are traditionally made of very hard tool steels, such as P20 steel, which is extremely heavy and has very long lead times to build new molds. In this study, composite-based additive manufacturing (CBAM) was used to create mold plates using long-fiber carbon fiber and polyether ether ketone (PEEK). These mold plates were installed in an injection molding machine, and rectangular flat plates were produced using Lustran 348 acrylonitrile butadiene styrene (ABS). Tensile and flexural testing was performed on these parts as well as parts produced using traditional P20 steel mold plates with the same geometry to compare the performance of the different mold plates. The parts produced using the carbon fiber mold plates were within 5% of the tensile strength and 10% of the flexural strength of the traditionally manufactured parts. However, the parts produced using the carbon fiber mold plates required additional cooling time due to the lower conductivity of the carbon fiber composite compared to the P20 steel. This allows additively manufactured composite molds to be a good substitute for conventional molds in low-volume injection molding production

    BeppoSAX Observations of Markarian 501 in June 1999

    Get PDF
    We present the preliminary results of a long BeppoSAX observation of the BL Lac object Mkn501 carried out in June 1999. The source was fainter than found during the BeppoSAX pointings of 1997 and 1998, but is still detected with a good signal-to-noise ratio up to ~40 keV. The X-ray spectrum in the energy range 0.1-40 keV, produced through synchrotron radiation, is steeper than in the previous years, it is clearly curved, and peaks (in nu*F_nu) at ~0.5 keV. This energy is much lower than those at which the synchrotron component was found to peak in 1997 and 1998. Some intraday variability suggests that activity of the source on small time scales accompanies the large long time scale changes of brightness and spectrum.Comment: 4 pages, Latex, 2 PostScript figures, to appear in the Proceedings of the Conference "X-ray Astronomy '999: Stellar Endpoints, AGNs, and the Diffuse X-ray Background" (Bologna, 6-10 September 1999

    The effects of skull flattening on suchian jaw muscle evolution

    Get PDF
    Jaw muscles are key features of the vertebrate feeding apparatus. The jaw musculature is housed in the skull whose morphology reflects a compromise between multiple functions, including feeding, housing sensory structures, and defense, and the skull constrains jaw muscle geometry. Thus, jaw muscle anatomy may be suboptimally oriented for the production of bite force. Crocodylians are a group of vertebrates that generate the highest bite forces ever measured with a flat skull suited to their aquatic ambush predatory style. However, basal members of the crocodylian line (e.g., Prestosuchus) were terrestrial predators with plesiomorphically tall skulls, and thus the origin of modern crocodylians involved a substantial reorganization of the feeding apparatus and its jaw muscles. Here, we reconstruct jaw muscles across a phylogenetic range of crocodylians and fossil suchians to investigate the impact of skull flattening on muscle anatomy. We used imaging data to create 3D models of extant and fossil suchians that demonstrate the evolution of the crocodylian skull, using osteological correlates to reconstruct muscle attachment sites. We found that jaw muscle anatomy in early fossil suchians reflected the ancestral archosaur condition but experienced progressive shifts in the lineage leading to Metasuchia. In early fossil suchians, musculus adductor mandibulae posterior and musculus pterygoideus (mPT) were of comparable size, but by Metasuchia, the jaw musculature is dominated by mPT. As predicted, we found that taxa with flatter skulls have less efficient muscle orientations for the production of high bite force. This study highlights the diversity and evolution of jaw muscles in one of the great transformations in vertebrate evolution.Fil: Sellers, Kaleb C.. University of Missouri; Estados UnidosFil: Nieto, Mauro Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; ArgentinaFil: Degrange, Federico Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Ciencias de la Tierra. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Centro de Investigaciones en Ciencias de la Tierra; ArgentinaFil: Pol, Diego. Museo Paleontológico Egidio Feruglio; ArgentinaFil: Clark, James M.. The George Washington University. Columbian College Of Arts And Sciences. Department Of Biological Sciences.; Estados UnidosFil: Middleton, Kevin M.. University of Missouri; Estados UnidosFil: Holliday, Casey M.. University of Missouri; Estados Unido

    Complex Spectral Variability from Intensive Multi-wavelength Monitoring of Mrk421 in 1998

    Get PDF
    We conducted a multi-frequency campaign for the TeV blazar Mrk~421 in 1998 April. The campaign started from a pronounced high amplitude flare recorded by SAX and Whipple; ASCA observation started three days later. In the X-ray data, we detected multiple flares, occuring on time scales of about one day. ASCA data clearly reveal spectral variability. The comparison of the data from ASCA, EUVE and RXTE indicates that the variability amplitudes in the low energy synchrotron component are larger at higher photon energies. In TeV Gamma-rays, large intra-day variations -- which were correlated with the X-ray flux -- were observed when results from three Cherenkov telescopes are combined. The RMS variability of TeV Gamma--rays was similar to that observed in hard X-rays, above 10 keV. The X-ray light curve reveals flares which are almost symmetric for most of cases, implying the dominant time scale is the light crossing time through the emitting region. The structure function analysis based on the continuous X-ray light curve of seven days indicates that the characteristic time scale is ~0.5 day. The analysis of ASCA light curves in various energy bands appears to show both soft (positive) and hard (negative) lags. These may not be real, as systematic effects could also produce these lags, which are all much smaller than an orbit. If the lags of both signs are real, these imply that the particle acceleration and X-ray cooling time scales are similar.Comment: 10 pages, 4 figures, accepted for publication in ApJ Letter

    Spectrum and Variability of Mrk501 as observed by the CAT Imaging Telescope

    Get PDF
    The CAT Imaging Telescope has observed the BL Lac object Markarian 501 between March and August 1997. We report here on the variability over this time including several large flares. We present also preliminary spectra for all these data, for the low emission state, and for the largest flare.Comment: 4 pages, 4 figures, Late

    Flexibility along the Neck of the Neogene Terror Bird Andalgalornis steulleti (Aves Phorusrhacidae)

    Get PDF
    BACKGROUND: Andalgalornis steulleti from the upper Miocene-lower Pliocene (≈6 million years ago) of Argentina is a medium-sized patagornithine phorusrhacid. It was a member of the predominantly South American radiation of 'terror birds' (Phorusrhacidae) that were apex predators throughout much of the Cenozoic. A previous biomechanical study suggests that the skull would be prepared to make sudden movements in the sagittal plane to subdue prey. METHODOLOGY/PRINCIPAL FINDINGS: We analyze the flexion patterns of the neck of Andalgalornis based on the neck vertebrae morphology and biometrics. The transitional cervical vertebrae 5th and 9th clearly separate regions 1-2 and 2-3 respectively. Bifurcate neural spines are developed in the cervical vertebrae 7th to 12th suggesting the presence of a very intricate ligamentary system and of a very well developed epaxial musculature. The presence of the lig. elasticum interespinale is inferred. High neural spines of R3 suggest that this region concentrates the major stresses during downstrokes. CONCLUSIONS/SIGNIFICANCE: The musculoskeletal system of Andalgalornis seems to be prepared (1) to support a particularly big head during normal stance, and (2) to help the neck (and the head) rising after the maximum ventroflexion during a strike. The study herein is the first interpretation of the potential performance of the neck of Andalgalornis in its entirety and we considered this an important starting point to understand and reconstruct the flexion pattern of other phorusrhacids from which the neck is unknown

    Very High Energy Gamma-ray spectral properties of Mrk 501 from CAT Cerenkov telescope observations in 1997

    Full text link
    The BL Lac object Mrk 501 went into a very high state of activity during 1997, both in VHE gamma-rays and X-rays. We present here results from observations at energies above 250 GeV carried out between March and October 1997 with the CAT Cerenkov imaging Telescope. The average differential spectrum between 30 GeV and 13 TeV shows significant curvature and is well represented by phi_0 * E_TeV^{-(alpha + beta*log10(E_TeV))}, with: phi_0 = 5.19 +/- 0.13 {stat} +/- 0.12 {sys-MC} +1.66/-1.04 {sys-atm} * 10^-11 /cm^2/s/TeV alpha = 2.24 +/- 0.04 {stat} +/- 0.05 {sys} beta = 0.50 +/- 0.07 {stat} (negligible systematics). The TeV spectral energy distribution of Mrk 501 clearly peaks in the range 500 GeV-1 TeV. Investigation of spectral variations shows a significant hardness-intensity correlation with no measurable effect on the curvature. This can be described as an increase of the peak TeV emission energy with intensity. Simultaneous and quasi-simultaneous CAT VHE gamma-ray and BeppoSAX hard X-ray detections for the highest recorded flare on 16th April and for lower-activity states of the same period show correlated variability with a higher luminosity in X-rays than in gamma-rays. The observed spectral energy distribution and the correlated variability between X-rays and gamma-rays, both in amplitude and in hardening of spectra, favour a two-component emission scheme where the low and high energy components are attributed to synchrotron and inverse Compton (IC) radiation, respectively.Comment: Submitted to Astronomy and Astrophysics, 8 pages including 6 figures. Published with minor change

    Observation of the Crab Nebula Gamma-Ray Emission Above 220 Gev by the Cat Cherenkov Imaging Telescope

    Get PDF
    The CAT imaging telescope, recently built on the site of the former solar plant Themis (French Pyrenees), observed gamma-rays from the Crab nebula from October 1996 to March 1997. This steady source, often considered as the standard candle of very-high-energy gamma-ray astronomy, is used as a test-beam to probe the performances of the new telescope, particularly its energy threshold (220 GeV at 20 degrees zenith angle) and the stability of its response. Due to the fine-grain camera, an accurate analysis of the longitudinal profiles of shower images is performed, yielding the source position in two dimensions for each individual shower.Comment: 5 pages, 3 figures, Tex, contribution to 25th ICRC Durba

    Detection of Vhe Gamma-Rays from MRK 501 with the Cat Imaging Telescope

    Get PDF
    The CAT imaging telescope on the site on the former solar plant Themis has been observing gamma-rays from Mrk501 above 220 GeV in March and April 1997. This source is shown to be highly variable and the light curve is presented. The detected gamma-ray rate for the most intense flare is in excess of 10 per minute.Comment: 5 pages, 4 figures, Tex, contribution to 25th ICRC Durba

    Simultaneous radio-interferometric and high-energy TeV observations of the gamma-ray blazar Mkn 421

    Full text link
    The TeV-emitting BL Lac object Mkn 421 was observed with very long baseline interferometry (VLBI) at three closely-spaced epochs one-month apart in March-April 1998. The source was also monitored at very-high gamma-ray energies (TeV measurements) during the same period in an attempt to search for correlations between TeV variability and the evolution of the radio morphology on parsec scales. While the VLBI maps show no temporal changes in the Mkn 421 VLBI jet, there is strong evidence of complex variability in both the total and polarized fluxes of the VLBI core of Mkn 421 and in its spectrum over the two-month span of our data. The high-energy measurements indicate that the overall TeV activity of the source was rising during this period, with a gamma-ray flare detected just three days prior to our second VLBI observing run. Although no firm correlation can be established, our data suggest that the two phenomena (TeV activity and VLBI core variability) are connected, with the VLBI core at 22 GHz being the self-absorbed radio counterpart of synchrotron self-Compton (SSC) emission at high energies. Based on the size of the VLBI core, we could derive an upper limit of 0.1 pc (3 x 10**17 cm) for the projected size of the SSC zone. This determination is the first model-free estimate of the size of the gamma-ray emitting region in a blazar.Comment: 12 pages, 9 figures, accepted for publication in Astronomy & Astrophysic
    corecore