809 research outputs found

    Characterisation and improvement of j(O¹D) filter radiometers

    Get PDF
    Atmospheric O3 → O(1D) photolysis frequencies j(O1D) are crucial parameters for atmospheric photochemistry because of their importance for primary OH formation. Filter radiometers have been used for many years for in situ field measurements of j(O1D). Typically the relationship between the output of the instruments and j(O1D) is non-linear because of changes in the shape of the solar spectrum dependent on solar zenith angles and total ozone columns. These non-linearities can be compensated for by a correction method based on laboratory measurements of the spectral sensitivity of the filter radiometer and simulated solar actinic flux density spectra. Although this correction is routinely applied, the results of a previous field comparison study of several filter radiometers revealed that some corrections were inadequate. In this work the spectral characterisations of seven instruments were revised, and the correction procedures were updated and harmonised considering recent recommendations of absorption cross sections and quantum yields of the photolysis process O3 → O(1D). Previous inconsistencies were largely removed using these procedures. In addition, optical interference filters were replaced to improve the spectral properties of the instruments. Successive determinations of spectral sensitivities and field comparisons of the modified instruments with a spectroradiometer reference confirmed the improved performance. Overall, filter radiometers remain a low-maintenance alternative of spectroradiometers for accurate measurements of j(O1D) provided their spectral properties are known and potential drifts in sensitivities are monitored by regular calibrations with standard lamps or reference instruments

    Evaluation of Novel Routes for NOx Formation in Remote Regions

    Get PDF
    Photochemical cycling of nitrogen oxides (NOx) produces tropospheric ozone (O₃), and NOx is traditionally considered to be directly emitted. The inability of current global models to accurately calculate NOx levels, and concurrently, difficulties in performing direct NOx measurements in low-NOx regimes (several pptv or several tens of pptv) globally introduce a large uncertainty in the modeling of O₃ formation. Here, we use the near-explicit Master Chemical Mechanism (MCM v3.2) within a 0D box-model framework, to describe the chemistry of NOx and O₃ in the remote marine boundary layer at Cape Verde. We explore the impact of a recently discovered NOx recycling route, namely photolysis of particulate nitrate, on the modeling of NOx abundance and O₃ formation. The model is constrained to observations of long-lived species, meteorological parameters, and photolysis frequencies. Only a model with this novel NOx recycling route reproduces levels of gaseous nitrous acid, NO, and NO₂ within the model and measurement uncertainty. O₃ formation from NO oxidation is several times more efficient than previously considered. This study highlights the need for the inclusion of particulate nitrate photolysis in future models for O₃ and for the photolysis rate of particulate nitrate to be quantified under variable atmospheric conditions

    Grey matter changes can improve the prediction of schizophrenia in subjects at high risk

    Get PDF
    BACKGROUND: We hypothesised that subjects at familial high risk of developing schizophrenia would have a reduction over time in grey matter, particularly in the temporal lobes, and that this reduction may predict schizophrenia better than clinical measurements. METHODS: We analysed magnetic resonance images of 65 high-risk subjects from the Edinburgh High Risk Study sample who had two scans a mean of 1.52 years apart. Eight of these 65 subjects went on to develop schizophrenia an average of 2.3 years after their first scan. RESULTS: Changes over time in the inferior temporal gyrus gave a 60% positive predictive value (likelihood ratio >10) of developing schizophrenia compared to the overall 13% risk in the cohort as a whole. CONCLUSION: Changes in grey matter could be used as part of a predictive test for schizophrenia in people at enhanced risk for familial reasons, particularly for positive predictive power, in combination with other clinical and cognitive predictive measures, several of which are strong negative predictors. However, because of the limited number of subjects, this test requires independent replication to confirm its validity

    Implementation of a chemical background method for atmospheric OH measurements by laser-induced fluorescence: characterisation and observations from the UK and China

    Get PDF
    Hydroxyl (OH) and hydroperoxy (HO2) radicals are central to the understanding of atmospheric chemistry. Owing to their short lifetimes, these species are frequently used to test the accuracy of model predictions and their underlying chemical mechanisms. In forested environments, laser-induced fluorescence–fluorescence assay by gas expansion (LIF–FAGE) measurements of OH have often shown substantial disagreement with model predictions, suggesting the presence of unknown OH sources in such environments. However, it is also possible that the measurements have been affected by instrumental artefacts, due to the presence of interfering species that cannot be discriminated using the traditional method of obtaining background signals via modulation of the laser excitation wavelength (“OHwave”). The interference hypothesis can be tested by using an alternative method to determine the OH background signal, via the addition of a chemical scavenger prior to sampling of ambient air (“OHchem”). In this work, the Leeds FAGE instrument was modified to include such a system to facilitate measurements of OHchem, in which propane was used to selectively remove OH from ambient air using an inlet pre-injector (IPI). The IPI system was characterised in detail, and it was found that the system did not reduce the instrument sensitivity towards OH ( 99 %) without the removal of OH formed inside the fluorescence cell (< 5 %). Tests of the photolytic interference from ozone in the presence of water vapour revealed a small but potentially significant interference, equivalent to an OH concentration of ∼4×105 molec. cm−3 under typical atmospheric conditions of [O3] =50 ppbv and [H2O] =1 %. Laboratory experiments to investigate potential interferences from products of isoprene ozonolysis did result in interference signals, but these were negligible when extrapolated down to ambient ozone and isoprene levels. The interference from NO3 radicals was also tested but was found to be insignificant in our system. The Leeds IPI module was deployed during three separate field intensives that took place in summer at a coastal site in the UK and both in summer and winter in the megacity of Beijing, China, allowing for investigations of ambient OH interferences under a wide range of chemical and meteorological conditions. Comparisons of ambient OHchem measurements to the traditional OHwave method showed excellent agreement, with OHwave vs OHchem slopes of 1.05–1.16 and identical behaviour on a diel basis, consistent with laboratory interference tests. The difference between OHwave and OHchem (“OHint”) was found to scale non-linearly with OHchem, resulting in an upper limit interference of (5.0±1.4) ×106 molec. cm−3 at the very highest OHchem concentrations measured (23×106 molec. cm−3), accounting for ∼14 %–21 % of the total OHwave signal

    Early Life Socioeconomic Circumstance and Late Life Brain Hyperintensities : A Population Based Cohort Study

    Get PDF
    Funding: Image acquisition and image analysis for this study was funded by the Alzheimer's Research Trust (now Alzheimer's Research UK). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Acknowledgments The authors would like to thank the participants of the Aberdeen 1936 Birth Cohort (ABC36), without whom this research would not have been possible.Peer reviewedPublisher PD

    Structural neuroimaging measures and lifetime depression across levels of phenotyping in UK biobank

    Get PDF
    Depression is assessed in various ways in research, with large population studies often relying on minimal phenotyping. Genetic results suggest clinical diagnoses and self-report measures of depression show some core similarities, but also important differences. It is not yet clear how neuroimaging associations depend on levels of phenotyping. We studied 39,300 UK Biobank imaging participants (20,701 female; aged 44.6 to 82.3 years, M = 64.1, SD = 7.5) with structural neuroimaging and lifetime depression data. Past depression phenotypes included a single-item self-report measure, an intermediate measure of ‘probable’ lifetime depression, derived from multiple questionnaire items relevant to a history of depression, and a retrospective clinical diagnosis according to DSM-IV criteria. We tested (i) associations between brain structural measures and each depression phenotype, and (ii) effects of phenotype on these associations. Depression-brain structure associations were small (β < 0.1) for all phenotypes, but still significant after FDR correction for many regional metrics. Lifetime depression was consistently associated with reduced white matter integrity across phenotypes. Cortical thickness showed negative associations with Self-reported Depression in particular. Phenotype effects were small across most metrics, but significant for cortical thickness in most regions. We report consistent effects of lifetime depression in brain structural measures, including reduced integrity of thalamic radiations and association fibres. We also observed significant differences in associations with cortical thickness across depression phenotypes. Although these results did not relate to level of phenotyping as expected, effects of phenotype definition are still an important consideration for future depression research

    Tevatron-for-LHC Report of the QCD Working Group

    Get PDF
    The experiments at Run 2 of the Tevatron have each accumulated over 1 inverse femtobarn of high-transverse momentum data. Such a dataset allows for the first precision (i.e. comparisons between theory and experiment at the few percent level) tests of QCD at a hadron collider. While the Large Hadron Collider has been designed as a discovery machine, basic QCD analyses will still need to be performed to understand the working environment. The Tevatron-for-LHC workshop was conceived as a communication link to pass on the expertise of the Tevatron and to test new analysis ideas coming from the LHC community. The TeV4LHC QCD Working Group focussed on important aspects of QCD at hadron colliders: jet definitions, extraction and use of Parton Distribution Functions, the underlying event, Monte Carlo tunes, and diffractive physics. This report summarizes some of the results achieved during this workshop.Comment: 156 pages, Tevatron-for-LHC Conference Report of the QCD Working Grou

    Automated Classification of Depression from Structural Brain Measures across Two Independent Community-based Cohorts

    Get PDF
    ACKNOWLEDGEMENTS: This study was supported and funded by the Wellcome Trust Strategic Award ‘Stratifying Resilience and Depression Longitudinally’ (STRADL) (Reference 104036/Z/14/Z), and the Medical Research Council Mental Health Pathfinder Award ‘Leveraging routinely collected and linked research data to study the causes and consequences of common mental disorders’ (Reference MRC-MC_PC_17209). MAH is supported by research funding from the Dr Mortimer and Theresa Sackler Foundation. The research was conducted using the UK Biobank resource, with application number 4844. Structural brain imaging data from the UK Biobank was processed at the University of Edinburgh Centre for Cognitive Ageing and Cognitive Epidemiology (CCACE) http://www.ccace.ed.ac.uk/), which is a part of the crosscouncil Lifelong Health and Wellbeing Initiative (MR/K026992/1). CCACE received funding from Biotechnology and Biological Sciences Research Council (BBSRC), Medical Research Council (MRC), and was also supported by Age UK as part of The Disconnected Mind project. This work has made use of the resources provided by the Edinburgh Compute and Data Facility (ECDF) (http://www.ecdf.ed.ac.uk/)Peer reviewedPublisher PD

    Functional gene group analysis indicates no role for heterotrimeric G proteins in cognitive ability

    Get PDF
    Previous functional gene group analyses implicated common single nucleotide polymorphisms (SNPs) in heterotrimeric G protein coding genes as being associated with differences in human intelligence. Here, we sought to replicate this finding using five independent cohorts of older adults including current IQ and childhood IQ, and using both gene- and SNP-based analytic strategies. No significant associations were found between variation in heterotrimeric G protein genes and intelligence in any cohort at either of the two time points. These results indicate that, whereas G protein systems are important in cognition, common genetic variation in these genes is unlikely to be a substantial influence on human intelligence differences
    corecore