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Abstract

Major depressive disorder (MDD) has been the subject of many neuroimaging case–

control classification studies. Although some studies report accuracies ≥80%, most

have investigated relatively small samples of clinically-ascertained, currently symp-

tomatic cases, and did not attempt replication in larger samples. We here first aimed

to replicate previously reported classification accuracies in a small, well-phenotyped

community-based group of current MDD cases with clinical interview-based diagno-

ses (from STratifying Resilience and Depression Longitudinally cohort, ‘STRADL’). We

performed a set of exploratory predictive classification analyses with measures

related to brain morphometry and white matter integrity. We applied three classifier

types—SVM, penalised logistic regression or decision tree—either with or without

optimisation, and with or without feature selection. We then determined whether

similar accuracies could be replicated in a larger independent population-based sam-

ple with self-reported current depression (UK Biobank cohort). Additional analyses

extended to lifetime MDD diagnoses—remitted MDD in STRADL, and lifetime-

experienced MDD in UK Biobank. The highest cross-validation accuracy (75%) was

achieved in the initial current MDD sample with a decision tree classifier and cortical

surface area features. The most frequently selected decision tree split variables

included surface areas of bilateral caudal anterior cingulate, left lingual gyrus, left

superior frontal, right precentral and paracentral regions. High accuracy was not

achieved in the larger samples with self-reported current depression (53.73%), with

remitted MDD (57.48%), or with lifetime-experienced MDD (52.68–60.29%). Our

results indicate that high predictive classification accuracies may not immediately

translate to larger samples with broader criteria for depression, and may not be

robust across different classification approaches.
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1 | INTRODUCTION

1.1 | Depression

Depression (major depressive disorder, MDD) is a prevalent psychiat-

ric condition which on average affects between 10 and 15% of the

general population over the lifetime in countries around the world

(Bromet et al., 2011; Kessler & Bromet, 2013; Lim et al., 2018). It is

among the leading causes of disability adjusted life years (Vos

et al., 2012), and has been estimated to cost €92 billion in Europe and

$210 billion in the USA in 2010 (Greenberg, Fournier, Sisitsky, Pike, &

Kessler, 2015; Olesen et al., 2012). Depression remains a challenge to

diagnose reliably and recent research indicates a particularly low rate

of diagnostic agreement between specialists (Freedman et al., 2013).

This emphasises the importance of developing better, more reliable

and objective diagnostic methods for the illness.

1.2 | Structural brain differences in depression

In depression, meta-analyses report grey-matter loss (compared to

controls) in frontal and cingulate cortices, as well as subcortical struc-

tures including basal ganglia, thalamus, hippocampus and amygdala

(Arnone et al., 2016; Arnone, McIntosh, Ebmeier, Munafò, &

Anderson, 2012; Bora, Harrison, Davey, Yücel, & Pantelis, 2012;

Kempton et al., 2011; Sacher et al., 2012; Wise et al., 2017). A recent

multi-site study with a large sample (N > 2,000 depression cases) also

suggests significant thinning of cortical grey matter in orbitofrontal

and cingulate cortices, as well as in the insula and temporal lobes in

MDD patients (Schmaal et al., 2017).

With regard to white matter integrity, depression has been found

to be associated with decreased fractional anisotropy (FA) in frontal,

temporal and occipital brain regions, and more specifically in superior

longitudinal fasciculus, uncinate fasciculus, anterior thalamus, medial

forebrain bundle and corpus callosum (Bracht, Linden, & Keedwell,

2015; Chen et al., 2017; Jiang et al., 2017; Liao et al., 2013; Murphy

& Frodl, 2011; Sexton, Mackay, & Ebmeier, 2009; van Velzen

et al., 2019; Wen, Steffens, Chen, & Zainal, 2014). Lower FA and

higher mean diffusivity (MD) are general indications of poorer white

matter organisation and have been associated with depression, as well

as of other psychiatric conditions (Shizukuishi, Abe, & Aoki, 2013).

1.3 | Classification of depression with brain
structural measures

One limitation of group-level findings is that in most cases they cannot

be applied directly for diagnostic purposes. This is because a single

effect identified at group-level may be present in some patients, but

not in others. Moreover, brain regions are organised in networks

(Sporns, 2013), and structural changes in one region can be related to

changes in others (Calhoun, 2018; Xu, Groth, Pearlson, Schretlen, &

Calhoun, 2009). It is hence more promising to combine multiple brain

measures within a machine learning approach for a more accurate diag-

nostic detection (Arbabshirani, Plis, Sui, & Calhoun, 2017). This has

been the subject of depression classification studies outlined below.

Existing studies have used measures derived from structural MRI

and DTI, with depression classification accuracies ranging from 55%

and up to and above 90% (reviews in Gao, Calhoun, & Sui, 2018; Kam-

beitz et al., 2017; Patel, Khalaf, & Aizenstein, 2016). Several studies

with regional cortical thickness, surface area and volume measures

reported cross-validation accuracies between 75 and 80% (Kipli &

Kouzani, 2015; Qiu et al., 2014). Although white matter integrity mea-

sures have seen limited application, several studies have also reported

accuracies close to 75% (Matsuoka et al., 2017; Schnyer, Clasen,

Gonzalez, & Beevers, 2017). Not all investigations have been as suc-

cessful, however. In one study, for example, classification with subcor-

tical grey matter volumes only reached 63% accuracy (Sacchet,

Livermore, Iglesias, Glover, & Gotlib, 2015). In the most recent multi-

site study with independent training and test data sets, Yang

et al. (2018) combined cortical and subcortical volume, cortical thick-

ness and white matter integrity (FA) measures and achieved an accu-

racy of 75%. Specificity (percentage of correctly classified controls in

the test sample), however, only reached modest 32% in this study—

likely due to the smaller number of controls than cases. Samples in all

studies were fairly small, with numbers of cases N < 60 (except for

Yang et al., 2018, where data from N = 147 MDD cases were used for

training and N = 83 for testing). In most studies case and control num-

bers were relatively balanced, with cases and controls also matched

for age and sex. This was an exception for Yang et al. (2018), where

there were three times more cases than controls.

An important limitation of the existing studies is that they did not

investigate what accuracies can be achieved in larger samples with

broader diagnostic criteria, but rather focused on relatively small sam-

ples with formally diagnosed depressed participants (Kambeitz

et al., 2017). Depression is a very common condition and it is unclear

whether high accuracies can generalise from clinically-defined to

community-based samples, which are larger, more heterogeneous,

and typically have less strict diagnostic criteria (Janssen, Mour~ao-

Miranda, & Schnack, 2018; Kim & Na, 2018; Schnack & Kahn, 2016).

1.4 | Study aims

In the current study we first aimed to replicate previously reported

accuracies in depression classification studies within a well-

characterised sample of formally diagnosed currently depressed

participants with brain morphometric (cortical thickness, regional vol-

umes and surface areas) and with white matter integrity (FA and MD)

measures. We aimed to explore several classification techniques and

brain measure subsets to identify the best accuracy that could be

achieved in this well-characterised data set, and to compare the accu-

racy with those of the previous studies. Samples in most previous

studies were balanced, and hence we also aimed to analyse samples

with balanced numbers of cases and controls, and with case and con-

trol participants matched for age and sex.
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Our second aim was to determine if similar accuracies could be

achieved in a larger (N > 700) independent sample with self-reported

current depression. Previous studies have only focused on small sam-

ples with formal diagnoses and in the current study we aimed to

make a novel contribution by testing whether previous results can be

replicated in a large community-based cohort. Community-based

depression is the most prevalent and whether it can be accurately

detected with brain measures remains an important open question,

addressed in this study. In addition to investigating current depres-

sion, we aimed to explore what accuracies can be achieved in larger

samples wit h either remitted or lifetime-experienced depression.

Previous literature did not focus on past depression and we aimed to

fill this gap by testing whether classification accuracies in samples

with these diagnostic criteria could be similar to those with criteria

for current depression.

For each of the investigated diagnostic samples we aimed to test

a number of alternative classification approaches in order to identify

the best approach and the corresponding accuracy. Different classifi-

cation methods are not equivalent and we considered that some may

perform better than others on specific data sets (e.g., Fernández-

Delgado, Cernadas, Barro, & Amorim, 2014).

A more general aim of our study was to make a contribution to

help bridge the gap between the depression research and the applied

machine learning communities, as machine learning techniques are

being increasingly used to investigate clinical populations (Arbabshirani

et al., 2017; Janssen et al., 2018).

2 | MATERIALS AND METHODS

2.1 | Brain measure data sets

Brain measures were taken from two data sets: STRADL (Stratifying

Depression and Resilience Longitudinally, Habota et al., 2019;

Navrady et al., 2018) and UK Biobank (http://www.ukbiobank.ac.uk,

RRID:SCR_012815; Bycroft et al., 2018; Sudlow et al., 2015). Brain

morphometric measures (cortical thickness, cortical surface areas, cor-

tical and subcortical volumes), alongside the relevant demographic

information, were available for N = 622 participants from STRADL

(quality controlled, scanned between June 2015 and August 2017),

and for first and second releases of UK Biobank (N = 8,959 after qual-

ity control, January 2017 release). White matter integrity measures

(FA and MD) were available for N = 873 participants from STRADL

(quality controlled, scanned between June 2015 and January 2019)

and for first through fourth releases of UK Biobank (N = 18,980 after

quality control, October 2018 release). There were less participants

with brain morphometric measures than with white matter integrity

measures because derivation of brain morphometry data required

more manual intervention during quality control in both cohorts.

STRADL received ethical approval from the NHS Tayside committee

on research ethics (reference 14/SS/0039). UK Biobank received ethi-

cal approval from the NHS Research Ethics Committee (reference

11/NW/0382), and the current study received approval from the

UKB Access Committee (application #4844). All participants in both

STRADL and UK Biobank gave written informed consent.

2.1.1 | Brain morphometric measures

In STRADL, T1-weighted imaging was performed at two sites

(Aberdeen and Dundee) with 3T magnetic resonance imaging scanners

(Supplementary section S1.1). N = 650 acquired scans (N = 465

from Aberdeen and N = 185 from Dundee) were processed using

FreeSurfer version 5.3 (http://surfer.nmr.mgh.harvard.edu, RRID:

SCR_001847; Fischl, 2012) and quality-controlled. N = 622 partici-

pants were included after quality control (please see Supplementary

section S1.1.2 for details). Derived brain measures consisted of corti-

cal thickness, cortical surface area and regional volumes for 34 bilateral

cortical regions, as well as volumes for 21 subcortical regions (includ-

ing four cerebellar regions) defined by the Desikan-Killiany atlas

(Desikan et al., 2006), comprising 225 measures in total.

In UK Biobank, T1-weighted imaging data was collected at one

site (Cheadle) with a 3T scanner (Siemens Skyra), following the stan-

dard and freely available UK Biobank imaging and quality control

protocols (Alfaro-Almagro et al., 2018; Smith, Alfaro-Almagro, &

Miller, 2018; UK Biobank, 2014). Brain morphometric measures for

N = 10,109 T1-weighted scans were derived locally with FreeSurfer

version 5.3 and quality controlled (Supplementary section S1.1.3;

Harris et al., 2019; Neilson et al., 2019; Ritchie et al., 2018). After

quality control, measures for N = 8,959 participants were included.

2.1.2 | White matter integrity measures

In STRADL, diffusion-weighted imaging was performed at the same

two sites and with the same scanners as T1-weighted imaging, as part

of a single protocol. FA and MD measures were derived with FSL and

TBSS toolkit for 896 participants (Tract-Based Spatial Statistics,

http://www.fmrib.ox.ac.uk/fsl, RRID:SCR_002823; Smith et al., 2006),

following ENIGMA consortium protocols (http://enigma.ini.usc.edu/

protocols/dti-protocols for FA measures and http://enigma.ini.usc.

edu/protocols/dti-protocols/enigma-dti-diffusivity-protocol/ for MD

measures). Average FA and MD measures were extracted for 19 bilat-

eral and 5 unilateral tracts based on the Johns-Hopkins University

(JHU) white matter atlas (Mori & Crain, 2006)—this resulted in 43 FA

and 43 MD measures in total for each participant. After quality

control, N = 873 participants were included (Supplementary

section S1.1.4).

In UK Biobank, diffusion-weighted imaging was performed

according to the standard UK Biobank imaging protocol (Smith

et al., 2018, sections 2.8 and 2.10). FA and MD measures were

derived for 21 bilateral tracts and six unilateral tracts, resulting in

48 FA and 48 MD measures in total (Mori & Crain, 2006; Smith

et al., 2018, sections 3.10 and 3.10.1). UK Biobank protocol was

slightly different from ENIGMA and there were measures for five

more tracts compared to STRADL. Data for N = 18,980 participants
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were available after quality control by the UK Biobank and after out-

lier exclusion (Supplementary section S1.1.5).

2.1.3 | Correction for confounders

For STRADL data sets, covariates of no interest included age, sex and

scan site. For UK Biobank data sets, covariates included age, sex, scan

site (where appropriate) and three coordinates denoting head position

in the scanner. Correction was performed by residualising each imaging

measure separately over the potential confounder variables—fitting

multiple linear regression model with covariates entered as predictors

and the imaging measure as the response. Residuals of the fitted

models were used as the corrected measures. In order to leverage the

large cohort sizes, this correction was performed on the entire (quality-

controlled) data sets, prior to selection of case–control matched

samples for classification.

2.2 | Diagnostic criteria

A broad range of diagnostic criteria were assessed in order to evaluate

different diagnostic frameworks and depths of phenotyping. Diagno-

ses of current or remitted depression in STRADL were based on clini-

cal interviews and were derived following the DSM criteria (American

Psychiatric Association, 2000). Diagnoses in UK Biobank were based

either on self-report (current or lifetime-experienced symptoms),

or on hospital records (lifetime-experienced depression). For both

STRADL and UK Biobank, we used two types of measures that

respectively assessed (a) cross-sectional, current depression symp-

toms, and (b) lifetime-experienced or remitted depression. Whereas

diagnostic criteria in STRADL were formal interview-based, criteria in

UK Biobank were more lenient as they were mainly based on self-

report (except for hospital-recorded past depression, Table 1). Predic-

tive modelling analyses were performed separately for each of the five

diagnostic definitions across two brain measure domains (brain mor-

phometry and white matter integrity), resulting in 10 sets of analyses

in total. Further details of each of the diagnostic criteria are presented

below and highlighted in Table 1.

2.2.1 | Diagnostic criteria in STRADL

Participants in STRADL were assessed with the research version of

the Structured Clinical Interview for DSM Disorders (SCID, First,

Gibbon, Spitzer, & Williams, 2002; Lobbestael, Leurgans, & Arntz, 2011).

Diagnostic criteria for current MDD (cMDD-STR) or remitted MDD

(rMDD-STR) were based on the diagnostic and statistical manual of

mental disorders (DSM, American Psychiatric Association, 2000). Partici-

pants were considered remitted if they met criteria for at least one past

episode of depression, but did not meet criteria for a current episode.

Participants in STRADL cohort could meet criteria either for current or

remitted MDD, but not for both.

2.2.2 | Diagnostic criteria in UK biobank

In UK Biobank, no formal clinical assessment of depression was made

at the time of the scan. We hence defined participants who were

likely symptomatic at scan-time based on the criteria defined in Smith

et al. (2013), combined with self-reported current symptoms. Briefly,

participants were classed as having probable current MDD (cMDD-

UKB) if they reported low mood or lack of interest lasting 2 weeks at

any time in the past (single-episode or recurrent), history of seeing a

psychiatrist or a GP for nerves, anxiety, tension or depression, and

reported current symptoms relevant to depression according to a

screening assessment at the time of the scan (see Supplementary

section S1.2.2 for screen and exclusion details; Smith et al., 2013; UK

Biobank, 2011). Participants were excluded if they had any major co-

morbid neurological or psychiatric disorder—schizophrenia, bipolar,

multiple personality disorder, autism, intellectual disability, Parkinson's

disease, multiple sclerosis or cognitive impairment.

There were two diagnostic definitions related to lifetime experi-

ence of MDD. The first definition was based on the questions from

Composite International Diagnostic Interview (CIDI-SF, Kessler,

Andrews, Mroczek, Ustun, & Wittchen, 1998), which was adminis-

tered as part of the UK Biobank online mental health questionnaire at

a subsequent time after the imaging assessment (Davis et al., 2019;

UK Biobank, 2017). Briefly, participants were classed as having had

lifetime experience of MDD (past MDD, pMDD-UKB-CIDI) if they

TABLE 1 Summary of the main characteristics of the five investigated diagnostic criteria

Diagnostic

criteria

Current

symptoms

Past

symptoms

Assessment

criteria

Assessment

method

Cases (morphometry/

white matter)

Current

depression

cMDD-STR ✓ - DSM Clinical interview 30/40

cMDD-UKB ✓ ✓ Manually defined Self-report 735/1,435

Past depression rMDD-STR ✕ ✓ DSM Clinical interview 148/202

pMDD-UKB CIDI - ✓ DSM Self-report 1,665/3,418

pMDD-UKB ICD - ✓ ICD Clinical interview 140/289

Note: Tick symbol denotes symptoms were present, dash denotes symptoms could be either present or absent, cross symbol denotes symptoms were absent.

Abbreviations: cMDD-STR, current MDD criteria in STRADL cohort; cMDD-UKB, probable current MDD criteria in UK Biobank cohort; DSM, Diagnostic

and Statistical Manual of Mental Disorders; ICD, International Statistical Classification of Diseases and Related Health Problems; pMDD-UKB-CIDI, lifetime

MDD criteria based on the online Composite International Diagnostic Interview (CIDI) in UK Biobank cohort; pMDD-UKB-ICD, lifetime MDD criteria

based on ICD and hospital records in UK Biobank cohort; rMDD-STR, remitted MDD criteria in STRADL cohort.
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reported experiencing one or more depressive episodes in their life

according to the DSM criteria (American Psychiatric Association,

2000). Participants were excluded from control sample for pMDD-

UKB-CIDI definition if they were likely to have experienced depres-

sion (Supplementary section S1.2.3). Assessment in pMDD-UKB-CIDI

definition was similar to SCID, but administered as part of an online

questionnaire.

The second diagnostic definition for lifetime MDD was derived

from medical records and was based on a formal past diagnosis of

depression, made by a clinician in a hospital setting according to the

ICD criteria (pMDD-UKB-ICD; UK Biobank, 2019; World Health

Organisation, 1992; Supplementary section S1.2.4). Because medical

records were not available for all participants in the UK Biobank, some

pMDD-UKB-ICD cases may have been missed. Participants were

excluded from control sample for this definition if they self-reported

past experience of mood disorder.

Two definitions of ‘lifetime-experienced’ MDD were studied

because we assumed that there could be differences between self-

reported and formally clinically-assessed experience of depression.

The main difference between the diagnostic criteria for lifetime expe-

rience of MDD (UK Biobank) and remitted MDD (STRADL) was that

participants meeting lifetime criteria could have an ongoing episode,

while those with remitted MDD could not. Our rationale was to check

if slight differences in assessment and inclusion criteria between these

three samples with past depression could lead to different classifica-

tion outcomes. It should be noted that participants in UK Biobank

could meet criteria for more than one diagnostic definition—cases in

pMDD-UKB-CIDI and pMDD-UKB-ICD, as well as cMDD-UKB sam-

ples could overlap between each other.

2.3 | Matched sample selection

Selection of age and sex matched cases and controls was performed

primarily to enable balanced class data for classifier training and testing.

Tables 2 and 3 outline the numbers and main demographic characteris-

tics of participants who met criteria for each of the five defined diag-

nostic definitions, with brain morphometric and white matter integrity

measures respectively (between N = 140 and N = 3,418 cases in each

sample). For each case participant from cMDD-STR and rMDD-STR

samples, we selected a control with no history of depression, matched

by handedness, sex and scan site, and with the smallest difference in

age. It is worth highlighting that control samples were drawn to have

minimal difference with cases with regard to demographic criteria (par-

ticularly age) and were thus non-random. For each case participant

from UK Biobank (cMDD-UKB, pMDD-UKB-CIDI and pMDD-UKB-

ICD samples), we selected a control with the same sex and scan site,

and the smallest age difference. Importantly, there were N > 700 cases

TABLE 2 Summary demographic
information for cases and controls in the
five analysed samples with brain
morphometric measures (cortical
thickness, surface areas, and volumes)

Sample Characteristic Controls Cases

Current depression cMDD-STR Size 30 30

Sex (male/female) 8/22 8/22

Age (years) 54.23 (10.98) 54.07 (10.96)

QIDS 3.3 (2.25) 13.97 (3.59)

Medicated 2 18

cMDD-UKB Size 735 735

Sex (male/female) 215/520 215/520

Age (years) 59.66 (7.21) 59.66 (7.21)

Past depression rMDD-STR Size 148 148

Sex (male/female) 44/104 44/104

Age (years) 58.06 (8.02) 57.16 (8.81)

QIDS 3.49 (2.35) 5.48 (3.91)

pMDD-UKB-CIDI Size 1,665 1,665

Sex (male/female) 544/1,121 544/1,121

Age (years) 60.91 (7.18) 60.90 (7.19)

pMDD-UKB-ICD Size 140 140

Sex (male/female) 49/91 49/91

Age (years) 61.59 (7.64) 61.59 (7.65)

Note: Standard deviations for age and QIDS are in brackets. In cMDD-STR sample participants were con-

sidered medicated if they had at least one antidepressant prescription.

Abbreviations: cMDD-STR, current MDD criteria in STRADL cohort; cMDD-UKB, probable current MDD

criteria in UK Biobank cohort; pMDD-UKB-CIDI, lifetime MDD criteria based on the online Composite

International Diagnostic Interview (CIDI) in UK Biobank cohort; pMDD-UKB-ICD, lifetime MDD criteria

based on ICD and hospital records in UK Biobank cohort; QIDS, Quick Inventory of Depressive

Symptomatology; rMDD-STR, remitted MDD criteria in STRADL cohort.
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with self-reported current depression in UK Biobank (cMDD-UKB sam-

ple), which is significantly more than in the previous depression classifi-

cation studies (Gao et al., 2018; Kambeitz et al., 2017).

2.4 | Predictive modelling

Predictive modelling was performed separately with brain morphomet-

ric data and with white matter integrity data—there were therefore

10 matched case–control data sets (five diagnostic definitions across

two feature domains). For each of the 10 data sets we performed

either leave-one-out (LOOCV), 10-fold or fivefold cross-validation,

depending on the size of the data set. Cross-validation was attempted

separately with three classifier models, with different feature sub-

domains (e.g., all brain morphometric measures or only cortical thick-

ness, surface area, volume or subcortical measures), with or without

classifier hyperparameter optimisation, and with or without feature

selection (e.g., Patel et al., 2015; Qiu et al., 2014; Schnyer et al., 2017;

Yang et al., 2018). Where feasible, cross-validation was repeated mul-

tiple times with different fold partitions. Cross-validation accuracies,

sensitivities, specificities and area under receiver operating character-

istic curve (ROC AUC, Melo, 2013) were recorded for each analysis to

identify classification approaches with the best results.

2.4.1 | Classification models and optimisation

We explored three classification models—support vector machine

with a Gaussian kernel (SVM, Cortes & Vapnik, 1995; Hofmann,

Schölkopf, & Smola, 2008), penalised logistic regression (PLR,

Zou & Hastie, 2005), and the simple decision tree (DT, Kingsford &

Salzberg, 2008). SVM was chosen because of wide use of the tech-

nique in previous neuroimaging classification studies with some

success (Arbabshirani et al., 2017; Kambeitz et al., 2017; Patel

et al., 2016). PLR was selected because it is a linear classifier and

has been shown to perform well in some previous studies with neu-

roimaging data (e.g., Dadi et al., 2019). DT was applied because of

its low computational complexity and suitability for data sets with

relatively small numbers of features. Classifier training and testing

was performed with MATLAB R2015b Statistics and Machine

Learning Toolbox (http://www.mathworks.com/products/matlab/,

Mathworks Inc, RRID:SCR_001622).

Classification with SVM and DT classifiers was attempted

both with and without hyperparameter optimisation. PLR model

always requires hyperparameter optimisation. Further details on

the specified fixed hyperparameter values and hyperparameter

search grids can be found in Supplementary sections S1.3.2

and S1.3.3.

TABLE 3 Summary demographic
information for cases and controls in the
five analysed samples with white matter
integrity measures (FA and MD)

Sample Characteristic Controls Cases

Current depression cMDD-STR Size 40 40

Sex (male/female) 10/30 10/30

Age (years) 55.03 (9.77) 54.23 (10.35)

QIDS 3.58 (2.54) 14.13 (3.88)

Medicated 2 28

cMDD-UKB Size 1,435 1,435

Sex (male/female) 451/984 451/984

Age (years) 60.11 (7.16) 60.11 (7.16)

Past depression rMDD-STR Size 202 202

Sex (male/female) 56/146 56/146

Age (years) 57.89 (8.84) 56.97 (9.28)

QIDS 3.53 (2.36) 5.38 (3.68)

pMDD-UKB-CIDI Size 3,418 3,418

Sex (male/female) 1,094/2,324 1,094/2,324

Age (years) 61.46 (7.09) 61.44 (7.11)

pMDD-UKB-ICD Size 289 289

Sex (male/female) 97/192 97/192

Age (years) 61.77 (7.70) 61.76 (7.70)

Note: Standard deviations for age and QIDS are in brackets. In cMDD-STR sample participants were

considered medicated if they had at least one antidepressant prescription.

Abbreviations: cMDD-STR, current MDD criteria in STRADL cohort; cMDD-UKB, probable current MDD

criteria in UK Biobank cohort; pMDD-UKB-CIDI, lifetime MDD criteria based on the online Composite

International Diagnostic Interview (CIDI) in UK Biobank cohort; pMDD-UKB-ICD, lifetime MDD criteria

based on ICD and hospital records in UK Biobank cohort; QIDS, Quick Inventory of Depressive

Symptomatology; rMDD-STR, remitted MDD criteria in STRADL cohort.
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2.4.2 | Feature selection

Two feature selection methods were attempted with SVM and decision

tree classifiers. The methods were a t-test filter and a wrapper method

based on sequential feature elimination (Aha & Bankert, 1996; Mwangi,

Tian, & Soares, 2014). Filter feature selection is widely used in neuroim-

aging classification studies (Kambeitz et al., 2017; Mwangi et al., 2014;

Patel et al., 2016), while sequential feature elimination was applied

because it offers more extensive exploration of feature space compared

to other methods, and counts of features in our study (less than 250 in

all analyses) enabled its application with reasonable computation times.

Sequential feature elimination is very computationally expensive and

we only applied it with fixed sets of hyperparameters (no combined

hyperparameter optimisation). In PLR classification, feature selection is

already embedded through elastic net regularisation (Zou &

Hastie, 2005) and no additional feature selection was performed.

Sequential feature elimination was not performed in cMDD-UKB

and pMDD-UKB-CIDI samples with combined brain morphometric

feature set and decision tree classifier, due to large sample sizes and

high computational complexity (Supplementary section S2.2). Further

details on the applied feature selection methods can be found in Sup-

plementary sections S1.3.4 and S1.3.5.

2.4.3 | Cross-validation

In analyses with cMDD-STR diagnostic definition we applied LOOCV

due to the small data set size (N = 60 participants with morphometric

brain measures and N = 80 participants with white matter integrity

measures)—in order to maximise the amount of training data. In all

other analyses we used 10-fold cross-validation, with an exception for

pMDD-UKB-CIDI data set of white matter integrity measures.

pMDD-UKB-CIDI white matter integrity data set was the largest

(N = 6,836 participants) and we applied fivefold cross-validation to

enable classifier training and optimisation in reasonable time. Cross-

validation was repeated 10 times with pre-determined random fold

partitions for each classification approach in smaller data sets (rMDD-

STR and pMDD-UKB-ICD diagnostic criteria). This was not feasible

for the larger data sets due to long optimisation times (cMDD-UKB

and pMDD-UKB-CIDI diagnostic criteria), and hence cross-validation

was performed only once with a single predefined partition. Fold par-

titions for the larger data sets were deterministically defined with an

algorithm which aimed to maximally balance cross-validation folds

with respect to age and sex (Supplementary section S1.3.6).

2.4.4 | Comparison of classification methods

To compare classification approaches we applied either corrected

paired t-tests (rMDD-STR and pMDD-UKB-ICD data sets, Bouckaert &

Frank, 2004; Nadeau & Bengio, 2003), or McNemar's test (cMDD-UKB

and pMDD-UKB-CIDI data sets, McNemar, 1947). Each approach was

given a relative score according to the number of approaches which

performed worse. Further details on comparison of classification

methods can be found in Supplementary section S1.3.7.

2.4.5 | Case–control differences

In addition to predictive modelling, we checked for case–control dif-

ferences in the 10 evaluated samples using simple two-sample t tests

with corrections for false discovery rate (Benjamini & Hochberg,

1995). Results for these analyses are reported in Supplementary

section S2.1.

3 | RESULTS

To summarise, accuracies above 60% were only achieved in the small

current MDD sample from STRADL (best accuracy 75% with brain

morphometric features and 61.25% with white matter integrity fea-

tures, Tables 4 and 5). Best accuracies across all classification

attempts in samples with all other diagnostic criteria were between

52.68 and 60.29%, and are summarised in Table 6.

3.1 | Classification of current MDD and controls

Top classification accuracy in the small cMDD-STR sample was 75%

(sensitivity 80%, specificity 70%, ROC AUC 0.68) with all surface

area features and the simple decision tree classifier, no hyper-

parameter optimisation, and no feature selection. Importance of

each feature in this analysis can be defined by the fraction of cross-

validation folds where the feature was selected as one of decision

tree cut variables. Surface area features with highest contribution

according to this criteria are illustrated in Figure 1—these included

right paracentral and precentral regions (selected in all folds), right

caudal anterior cingulate (54 of 60 folds), left lingual gyrus (51 of

60 folds), left caudal anterior cingulate (28 of 60 folds), and left

superior frontal region (26 of 60 folds). We additionally assessed fea-

ture contributions to the best classification accuracy by excluding

one feature at a time and assessing drops in cross-validation accu-

racy. Top contributing features according to this criteria were the

four most important in Figure 1—right precentral (accuracy drop

23.3%), right paracentral (20%), left lingual (10%) and right caudal

anterior cingulate (8.3%) regions.

Classification accuracy decreased from 75 to 68.33% (sensitivity

70.00%, specificity 66.67%, ROC AUC 0.637) with added sequential

feature elimination and with hyperparameter optimisation it reached

65% (sensitivity 76.67%, specificity 53.33%, ROC AUC 0.677). This

could be indicative of optimisation-related over-fitting. Accuracies with

all other feature domains with DT classifier were below 60%. With

SVM classifier, top accuracy reached 63.33% with all thickness features

(no optimisation or feature selection; sensitivity 63.33%, specificity
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63.33%, ROC AUC 0.682). Accuracies for all classification attempts

with morphometric brain measures in cMDD-STR sample can be

found in Table 4.

For white matter integrity measures, top accuracy reached

61.25% (sensitivity 57.50%, specificity 65%, ROC AUC 0.673) with

SVM classifier, all MD features and hyperparameter grid search.

TABLE 4 Case-control classification accuracies and ROC AUC measures (on cross-validation) with brain morphometric features in cMDD-
STR sample (30 cases and 30 controls)

Classifier

type

Feature

selection

Hyperparam.

optimisation Outer CV Inner CV Feature domain

Classification accuracy

(sensitivity/specificity)

ROC

AUC

PLR Embedded Grid search LOOCV 10-fold Thickness 60.00% (56.67/63.33%) 0.609

Surface area 51.67% (50.00/53.33%) 0.547

Volume 56.67% (60.00/53.33%) 0.539

Subcortical 55.00% (56.67/53.33%) 0.572

Combined 50.00% (46.67/53.33%) 0.546

SVM None None LOOCV - Thickness 63.33% (63.33/63.33%) 0.682

Surface area 46.67% (43.33/50.00%) 0.529

Volume 51.67% (40.00/63.33%) 0.550

Subcortical 60.00% (60.00/60.00%) 0.582

Combined 61.67% (70.00/53.33%) 0.568

Grid search LOOCV Thickness 60.00% (60.00/60.00%) 0.556

Surface area 50.00% (46.67/53.33%) 0.500

Volume 61.67% (50.00/73.33%) 0.649

Subcortical 58.33% (50.00/66.67%) 0.602

Combined 58.33% (63.33/53.33%) 0.628

Statistical filter None Combined 53.33% (40.00/66.67%) 0.540

Grid search 10-fold Combined 45.00% (40.00/50.00%) 0.513

Sequential

elimination

None Thickness 61.67% (56.67/66.67%) 0.687

Surface area 48.33% (43.33/53.33%) 0.519

Volume 50.00% (36.67/63.33%) 0.556

Subcortical 53.33% (50.00/56.67%) 0.573

Combined 61.67% (63.33/60.00%) 0.659

DT None None LOOCV - Thickness 38.33% (40.00/36.67%) 0.283

Surface area 75.00% (80.00/70.00%) 0.680

Volume 45.00% (43.33/46.67%) 0.377

Subcortical 43.33% (46.67/40.00%) 0.394

Combined 55.00% (50.00/60.00%) 0.473

Grid search LOOCV Thickness 51.67% (53.33/50.00%) 0.318

Surface area 65.00% (76.67/53.33%) 0.677

Volume 46.67% (46.67/46.67%) 0.442

Subcortical 58.33% (56.67/60.00%) 0.500

Combined 38.33% (46.67/30.00%) 0.407

Statistical filter None Combined 33.33% (43.33/23.33%) 0.189

Grid search 10-fold Combined 43.33% (43.33/43.33%) 0.350

Sequential

elimination

None Thickness 35.00% (46.67/23.33%) 0.255

Surface area 68.33% (70.00/66.67%) 0.637

Volume 40.00% (40.00/40.00%) 0.292

Subcortical 51.67% (46.67/56.67%) 0.426

Combined 63.33% (56.67/70.00%) 0.533

Note: Top accuracies for SVM, PLR and DT classifiers are in italics.

Abbreviations: CV, cross-validation; DT, decision tree; LOOCV, leave-one-out cross-validation; PLR, penalised logistic regression; ROC AUC, receiver operating

characteristic area under the curve; SVM, support vector machine.
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Accuracies for all other optimisation attempts were below 58% and

are outlined in Table 5.

We performed additional analyses to check if the best classifica-

tion accuracy can be replicated with a different set of controls. The

alternative set of controls was again matched to cases by age and

sex, although matching for age was slightly worse compared to the

original sample. The previous best approach (decision tree with sur-

face area features) with added sequential feature elimination

reached 61.67% accuracy (sensitivity 63.33%, specificity 60%, ROC

AUC 0.501), which was the best for the sample. Similar accuracy was

achieved with SVM with hyperparameter grid search and cortical

thickness features (sensitivity 60%, specificity 63.33%, ROC AUC

0.57), and with PLR classifier and combined feature set (sensitivity

63.33%, specificity 60%, ROC AUC 0.648). Results for the original

best approach without added sequential feature elimination were

not replicated (accuracy 50%, sensitivity 60%, specificity 40%, ROC

AUC 0.438). Details of these analyses can be found in Supplemen-

tary section S2.2.

TABLE 5 Case-control classification accuracies and ROC AUC measures (on cross-validation) with white matter integrity features in the
cMDD-STR sample (40 cases and 40 controls)

Classifier

type

Feature

selection

Hyperparam

optimisation

Outer

CV

Inner

CV

Feature

domain

Classification accuracy

(sensitivity/specificity)

ROC

AUC

PLR Embedded Grid search LOOCV 10-fold FA 31.25% (35.00/27.50%) 0.363

MD 53.75% (55.00/52.50%) 0.589

Combined 48.75% (50.00/47.50%) 0.474

SVM None None LOOCV - FA 48.75% (40.00/57.50%) 0.484

MD 57.50% (55.00/60.00%) 0.536

Combined 52.50% (50.00/55.00%) 0.520

Grid search LOOCV FA 50.00% (40.00/60.00%) 0.505

MD 61.25% (57.50/65.00%) 0.673

Combined 53.75% (52.50/55.00%) 0.559

Statistical filter None FA 40.00% (32.50/47.50%) 0.345

MD 37.50% (30.00/45.00%) 0.353

Combined 30.00% (20.00/40.00%) 0.283

Grid search 10-fold FA 52.50% (60.00/45.00%) 0.476

MD 38.75% (40.00/37.50%) 0.385

Combined 38.75% (40.00/37.50%) 0.328

Sequential elimination None FA 47.50% (40.00/55.00%) 0.488

MD 53.75% (52.50/55.00%) 0.534

Combined 51.25% (55.00/47.50%) 0.501

DT None None LOOCV - FA 53.75% (50.00/57.50%) 0.434

MD 56.25% (55.00/57.50%) 0.514

Combined 57.50% (42.50/72.50%) 0.552

Grid search LOOCV FA 48.75% (65.00/32.50%) 0.350

MD 47.50% (40.00/55.00%) 0.372

Combined 51.25% (47.50/55.00%) 0.563

Statistical filter None FA 45.00% (35.00/55.00%) 0.323

MD 43.75% (30.00/57.50%) 0.331

Combined 36.25% (30.00/42.50%) 0.256

Grid search 10-fold FA 42.50% (47.50/37.50%) 0.280

MD 40.00% (35.00/45.00%) 0.204

Combined 33.75% (35.00/32.50%) 0.267

Sequential elimination None FA 48.75% (45.00/52.50%) 0.433

MD 52.50% (52.50/52.50%) 0.458

Combined 56.25% (55.00/57.50%) 0.488

Note: Top accuracies for SVM, PLR and DT classifiers are in italics.

Abbreviations: CV, cross-validation; DT, decision tree; LOOCV, leave-one-out cross-validation; PLR, penalised logistic regression; ROC AUC, receiver operating

characteristic area under the curve; SVM, support vector machine.
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3.2 | Classification of self-reported current
depression and controls in large UKB sample

High classification accuracies were not replicated in the large population-

based sample with self-reported current depression (cMDD-UKB). Top

accuracy for the data set with brain morphometric measures only

reached 52.80% (sensitivity 52.66%, specificity 52.92%, ROC AUC

0.540) with PLR classifier (hyperparameter optimisation and embedded

feature selection) and cortical thickness features. Top accuracy with

white matter integrity measures was 53.73% (sensitivity 51.08%, speci-

ficity 56.37%, ROC AUC 0.549) with SVM classifier, combined FA and

MD features and sequential feature elimination. Accuracies and scores

for each classification approach can be found in Tables S12 and S16.

3.3 | Classification of remitted MDD and controls

Top accuracy in rMDD-STR sample with brain morphometric

measures reached 57.48% (sensitivity 52.57%, specificity

62.35%, ROC AUC 0.572) with decision tree classifier, hyper-

parameter grid search, filter feature selection and combined

feature set (best approach score of 13 of maximal 37). This

was closely followed by decision tree without optimisation or

feature selection (accuracy 57.09%, sensitivity 56.64%, specific-

ity 57.47%, ROC AUC 0.591, score 11). Accuracies for all other

classification attempts with brain morphometric measures were

lower than 56% and can be found alongside the related scores

in Table S11.

Top accuracy with white matter integrity measures was

55.54% (sensitivity 59.16%, specificity 51.92%, ROC AUC 0.560)

with SVM, all MD features and hyperparameter grid search (classifi-

cation approach score second-best with 6 of 28). This was closely

followed by PLR classifier with accuracy 55.15% (sensitivity

53.48%, specificity 56.78%, ROC AUC 0.560, score 7), and SVM

with no optimisation or feature selection (accuracy 55.08%, sensi-

tivity 54.23%, specificity 55.90%, score 6). Accuracies for all other

classification attempts were below 55% and can be found in

Table S15.

TABLE 6 Best accuracies and related ROC AUC measures for case-control classification (on cross-validation) for brain moprhometric and
white matter integrity features in cMDD-UKB, rMDD-STR, pMDD-UKB-CIDI, and pMDD-UKB-ICD samples

Data set Feature domain

Sample

size Classification approach

Classification accuracy

(sensitivity/specificity)

ROC

AUC

cMDD-UKB Cortical thickness features 1,470 PLR classifier

- Hyperparameter grid search

- Embedded feature selection

52.80% (52.66/52.92%) 0.540

Combined FA and MD features 2,870 SVM classifier

- No hyperparameter optim.

- Sequential feat. Elimination

53.73% (51.08/56.37%) 0.549

rMDD-STR Combined brain morphometric

features

296 Decision tree classifier

- Hyperparameter grid search

- Filter feature selection

57.48% (52.57/62.35%) 0.572

MD features 404 SVM classifier

- Hyperparameter grid search

- No feature selection

55.54% (59.16/51.92%) 0.560

pMDD-UKB-CIDI Cortical thickness features 3,330 SVM classifier

- No hyperparameter optim.

- No feature selection

53.63% (53.72/53.54%) 0.532

Combined FA and MD features 6,836 SVM classifier

- 5-fold inner/outer CV

- No hyperparameter optim.

- Sequential feat. Elimination

52.68% (53.63/51.73%) 0.531

pMDD-UKB-ICD Combined brain morphometric

features

280 PLR classifier

- Hyperparameter grid search

- Embedded feature selection

60.29% (61.86/58.71%) 0.645

MD features 578 SVM classifier

- No hyperparameter optim.

- Filter feature selection

56.18% (68.56/43.83%) 0.566

Note: Combined brain morphometric features included cortical thickness, surface area, cortical and subcortical volume measures. Nested 10-fold outer and

10-fold inner cross-validation was performed in all analyses, except where otherwise specified. Top two accuracies are in italics.

Abbreviations: cMDD-UKB, sample with probable current MDD in UK Biobank cohort; FA, fractional anisotropy; MD, mean diffusivity; PLR, penalised

logistic regression; pMDD-UKB-CIDI, sample with lifetime MDD based on the online Composite International Diagnostic Interview (CIDI) criteria in UK

Biobank cohort; pMDD-UKB-ICD, sample with lifetime MDD based on the ICD criteria and hospital records in UK Biobank cohort; rMDD-STR, sample

with remitted MDD in STRADL cohort; ROC AUC, receiver operating characteristic area under the curve; SVM, support vector machine.
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3.4 | Classification of lifetime-experienced
MDD and controls

3.4.1 | Classification of self-reported lifetime
MDD and controls

Top accuracy in pMDD-UKB-CIDI sample with brain morphometric

features was 53.63% (sensitivity 53.72%, specificity 53.54%, ROC

AUC 0.532) with SVM classifier, no optimisation or feature selection

and cortical thickness features. Top accuracy with white matter integ-

rity measures was only 52.68% (sensitivity 53.63%, specificity

51.73%, ROC AUC 0.531) with SVM and sequential feature elimina-

tion on combined set of FA and MD measures. Accuracies for all other

classification attempts were lower and can be found alongside scores

for each approach in Tables S13 and S17.

3.4.2 | Classification of hospital-recorded lifetime
MDD and controls

Top accuracy for the pMDD-UKB-ICD sample with brain morphomet-

ric measures reached 60.29% (sensitivity 61.86%, specificity 58.71%,

ROC AUC 0.645) with PLR classifier and combined feature set (best

score of 20 out of maximal 37). Accuracies for all other classification

attempts with brain morphometric measures were below 59% and can

be found alongside scores for each approach in Table S14.

Top accuracy with white matter integrity measures was 56.18%

(sensitivity 68.56%, specificity 43.83%, ROC AUC 0.566) with SVM

classifier, MD features and filter feature selection (best score of 12 of

maximal 31). All other accuracies for the sample were below 56% and

can be found together with scores for each approach in Table S18.

4 | DISCUSSION

4.1 | Classification of current depression

4.1.1 | Classification accuracy

The best classification accuracies were achieved in the small sam-

ple with formally-diagnosed current MDD (cMDD-STR, 75% with

decision tree and surface area features; 61.25% with MD features

and SVM classifier with optimised hyperparameters). These results

are broadly consistent with those of previous studies with similar

feature domains, where best accuracies were between 60 and

80% (Kipli & Kouzani, 2015; Matsuoka et al., 2017; Qiu et al.,

2014; Sacchet et al., 2015; Schnyer et al., 2017; Yang et al.,

2018). MD features in the study appeared more discriminative of

F IGURE 1 Surface area regions consistently selected as decision tree cut features across cross-validation folds in cMDD-STR sample. Colour
of each region indicates fraction of folds where surface area of the region was selected as one of the cut variables. Regions in dark grey were
never selected. Most frequently selected regions include bilateral caudal anterior cingulate, left lingual gyrus, left superior frontal, right precentral
and paracentral regions
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current MDD than FA features (Table 5), which is consistent with

some of the previous work in our lab (Barbu et al., 2019; Shen

et al., 2019).

It could be highlighted that combination of feature subsets almost

never outperforms the subsets applied individually, even with feature

selection or regularisation (Tables 4 and 5). This could be because the

feature subsets contain more non-overlapping redundant information

compared to complementary depression-relevant information (for

example volume measures depend on both surface area and cortical

thickness measures), and thus combining them does not aid in

classification.

The best accuracy of 75% was not replicated when the control

sample was replaced, although a similar classification approach

achieved an accuracy of 61.67% (Table S19). This could in part be due

to the fact that the replaced controls were slightly less well matched

to cases with respect to age. On the other hand, it is likely that non-

depressed control participants are heterogeneous and some may be

better discriminated from depressed participants than others.

4.1.2 | Predictive brain regions

Six surface area measures were identified as the most predictive of

current MDD (Figure 1). Decreases in grey matter in precentral cortex

were previously reported in several studies (Grieve, Korgaonkar,

Koslow, Gordon, & Williams, 2013; Zhang et al., 2012), although

reductions in surface area in this region were reported more specifi-

cally for adolescent depression (Schmaal et al., 2017). Anterior cingu-

late cortex has long been theorised to play an important role in MDD

due to its involvement in processing of reward and emotional informa-

tion (Diener et al., 2012; Holroyd & Umemoto, 2016; Rolls, 2016);

brain structural studies do indeed show changes in this region, as well

as in the adjacent superior frontal cortex (Grieve et al., 2013; Li

et al., 2020; Schmaal et al., 2017; Zhao et al., 2017). For lingual gyrus,

increased grey-matter volume was reported in late-life and late-onset

depression (Ancelin et al., 2019; Du et al., 2014), but surface area

reductions were found in adolescent depression (Schmaal et al., 2017).

These regions are, of course, only a subset of those identified as altered

in MDD and others include the wider frontal cortex and the subcortical

structures including the amygdala, hippocampus and the thalamus

(Arnone et al., 2016; Wise et al., 2017). It is likely that the current MDD

cases in our study represent a subtype of depression characterised

by changes in the identified regions and that other subtypes may

be characterised by different patterns of changes in the brain.

4.2 | Classification of self-reported current
depression in larger population sample

The core novel contribution of our study is in attempted classification

of depression in the comparatively very large community-based UK

Biobank sample (cMDD-UKB). There were N = 735 cases in the data

set of brain morphometric measures and N = 1,435 cases in the data

set of white matter integrity measures (Tables 2 and 3), which is sig-

nificantly larger than in most previous depression classification studies

(Gao et al., 2018; Kambeitz et al., 2017). High accuracies were not

replicated in this sample (Tables 6, S12 and S16) which indicates that

community-based depression, which is the most prevalent, cannot be

accurately detected using structural brain measures.

Consistent with our findings, recent reviews indicate that the

highest accuracies to date have only been achieved in imaging classifi-

cation studies with small samples (N < 100 participants), and that

accuracy tends to decrease with larger sample sizes (Arbabshirani

et al., 2017; Janssen et al., 2018). Kim and Na (2018) highlight that

because most studies focus on small and relatively homogeneous

samples, best results may not immediately translate to real-world set-

tings with large heterogeneous depressed populations, due to factors

such as co-morbidities, medication, differences in illness severity and

recurrence, and clinical subtypes. In addition, other factors such as

multiple scanning sites and difficulties with managing artefacts in large

data sets may also be at play (e.g., Johnston, Mwangi, Matthews,

Coghill, & Steele, 2013). Our results underscore importance of these

points—high accuracies were only found in the small cMDD-STR sam-

ple, were not replicated in larger samples, and best accuracies tended

to decrease towards chance level with increasing sample size

(Figure 2).

Apart from the large sample size and the resulting heterogeneity,

one factor which may have contributed to the lower accuracies is the

difference in the diagnostic criteria. There were no formal diagnoses

at scan time for UK Biobank participants and the current depression

diagnoses were based on self-reported past and current symptoms

(Supplementary section S1.2.2). These criteria arguably correspond to

less severe forms of depression, more prevalent in community set-

tings. Less severe depression is likely to have fewer and weaker asso-

ciations with changes in brain structure, which in turn may have

contributed to lower classification accuracies.

F IGURE 2 Best classification accuracies plotted against sample
sizes for all 10 analysed samples (five diagnostic definitions across two
feature domains—brain morphometry and white matter integrity). Best
accuracy tended to decrease towards chance level with increasing
sample size. Sample size/abscissa axis logarithmically scaled.
Abbreviation: ROC AUC, receiver operating characteristic area under
the curve
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4.3 | Classification of remitted or lifetime-
experienced depression

The second novel contribution of our study is attempted classifica-

tion of depression in samples with diagnostic criteria related to past

depression (remitted or lifetime-experienced). Top two accuracies

were 60.29% for pMDD-UKB-ICD diagnostic definition, and 57.48%

for rMDD-STR definition, with all brain morphometric features

(Table 6). Previous classification literature did not study past depres-

sion, but indicates that the best accuracies can be achieved in sam-

ples with severe and chronic/treatment-resistant ongoing episodes

(e.g., Johnston, Steele, Tolomeo, Christmas, & Matthews, 2015;

Mwangi, Ebmeier, Matthews, & Steele, 2012). These are typically

patients who are medicated and seen long-term in clinical care, but

who are studied less often due to long time and resources necessary

for recruitment. In a recent review, Kambeitz et al. (2017) highlight

that current symptom severity (as measured by Hamilton Depression

Rating Scale, Hamilton, 1980) could predict better classification out-

comes across 33 analysed studies, covering both brain structural and

functional feature modalities (e.g., task-related and resting-state

brain activation; Johnston et al., 2015; Zeng et al., 2012). Our results

extend the previous literature and suggest that, compared to current

depression, cases with past depression are even more difficult to

discriminate from healthy controls based on structural brain

measures.

It is worth highlighting that participants with past depression in

our study were of relatively older age (mean ages 57–62, Tables 2 and

3). With increasing age brain structure may be influenced more by

medications, cardio-vascular health, lifestyle and other factors, which

may in turn impact how depression affects the brain. Future research

could take these factors into account when classifying past or present

depression in older age.

4.4 | Classification methods

Selection of classification methods in our study was guided by the

previous neuroimaging literature and computational complexity con-

siderations. SVM, decision tree and penalised logistic regression are

among the most promising classifiers based on the previous studies

(Arbabshirani et al., 2017; Dadi et al., 2019; Fernández-Delgado

et al., 2014; Kambeitz et al., 2017). Sequential feature elimination

enabled the most extensive feasible exploration of the feature

space, but is computationally expensive and could only be applied

in our study because of the relatively low numbers of features

(225 or less in all analyses). Future studies could attempt classifica-

tion with other data modalities such as VBM or multiple estimates

of connectivity between brain regions. Because feature counts in

these modalities are typically very large, alternative classification

methods could include neural network classifiers, minimum redun-

dancy maximum relevance (mRMR) feature selection, or recursive

feature elimination (Ramírez-Gallego et al., 2017; Sanz, Valim,

Vegas, Oller, & Reverter, 2018; Vieira, Pinaya, & Mechelli, 2017).

5 | CONCLUSION

We explored a range of classification approaches with brain morpho-

metric and white matter integrity measures, and were able to achieve

cross-validation accuracies up to 75% in the small sample with

formally-defined current MDD. The core contribution of our study is

that these results could not be replicated in a comparatively very large

community-based sample with self-reported depression. High classifi-

cation accuracies were also not replicated in larger samples with

remitted or lifetime-experienced MDD. Previous studies largely

focused on small samples with formal diagnoses for current depres-

sion. Our results complement this literature and suggest that it may

not be possible to accurately detect community-based depression in

large samples with structural brain measures. Future studies could

examine whether high accuracies can be achieved in larger samples

with formally diagnosed and more severe MDD (for example, long-

term psychiatric outpatients), and explore other feature domains such

as task-related fMRI and brain connectivity.
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