41 research outputs found

    Increasing the resilience of plant immunity to a warming climate

    Get PDF
    Extreme weather conditions associated with climate change affect many aspects of plant and animal life, including the response to infectious diseases. Production of salicylic acid (SA), a central plant defence hormone, is particularly vulnerable to suppression by short periods of hot weather above the normal plant growth temperature range via an unknown mechanism. Here we show that suppression of SA production in Arabidopsis thaliana at 28 °C is independent of PHYTOCHROME B (phyB) and EARLY FLOWERING 3 (ELF3), which regulate thermo-responsive plant growth and development. Instead, we found that formation of GUANYLATE BINDING PROTEIN-LIKE 3 (GBPL3) defence-activated biomolecular condensates (GDACs) was reduced at the higher growth temperature. The altered GDAC formation in vivo is linked to impaired recruitment of GBPL3 and SA-associated Mediator subunits to the promoters of CBP60g and SARD1, which encode master immune transcription factors. Unlike many other SA signalling components, including the SA receptor and biosynthetic genes, optimized CBP60g expression was sufficient to broadly restore SA production, basal immunity and effector-triggered immunity at the elevated growth temperature without significant growth trade-offs. CBP60g family transcription factors are widely conserved in plants. These results have implications for safeguarding the plant immune system as well as understanding the concept of the plant–pathogen–environment disease triangle and the emergence of new disease epidemics in a warming climate

    Induction of sustained clinical remission in early axial spondyloarthritis following certolizumab pegol treatment: 48-week outcomes from C-OPTIMISE

    Get PDF
    INTRODUCTION: Achievement of remission is a key treatment goal for patients with axial spondyloarthritis (axSpA). C-OPTIMISE assessed achievement of sustained clinical remission in patients with axSpA, including radiographic (r) and non-radiographic (nr) axSpA, during certolizumab pegol (CZP) treatment, and subsequent maintenance of remission following CZP dose continuation, dose reduction or withdrawal. Here, we report outcomes from the first 48 weeks (induction period) of C-OPTIMISE, during which patients received open-label CZP. METHODS: C-OPTIMISE (NCT02505542) was a two-part, multicenter, phase 3b study in adult patients with early axSpA (r-/nr-axSpA), including a 48-week open-label induction period followed by a 48-week maintenance period. Patients with active adult-onset axSpA, < 5 years' symptom duration, and fulfilling Assessment of SpondyloArthritis international Society classification criteria, were included. During the induction period, patients received a loading dose of CZP 400 mg at weeks 0, 2, and 4, followed by CZP 200 mg every 2 weeks (Q2W) up to week 48. The main outcome of the 48-week induction period was the achievement of sustained clinical remission (defined as an Ankylosing Spondylitis Disease Activity Score [ASDAS] < 1.3 at week 32 and < 2.1 at week 36 [or vice versa], and < 1.3 at week 48). RESULTS: In total, 736 patients (407 with r-axSpA, 329 with nr-axSpA) were enrolled into the study. At week 48, 43.9% (323/736) of patients achieved sustained remission, including 42.8% (174/407) of patients with r-axSpA and 45.3% (149/329) with nr-axSpA. Patients also demonstrated substantial improvements in axSpA symptoms, MRI outcomes and quality of life measures. Adverse events occurred in 67.9% (500/736) of patients, of which 6.0% (44/736) were serious. CONCLUSIONS: Over 40% of patients with early axSpA achieved sustained remission during 48 weeks of open-label CZP treatment. Additionally, patients across the axSpA spectrum demonstrated substantial improvements in imaging outcomes and quality of life following treatment. No new safety signals were identified. TRIAL REGISTRATION: NCT02505542

    Analysis of Epstein-Barr virus reservoirs in paired blood and breast cancer primary biopsy specimens by real time PCR

    Get PDF
    INTRODUCTION: Epstein-Barr virus (EBV) is present in over 90% of the world's population. This infection is considered benign, even though in limited cases EBV is associated with infectious and neoplastic conditions. Over the past decade, the EBV association with breast cancer has been constantly debated. Adding to this clinical and biological uncertainty, different techniques gave contradictory results for the presence of EBV in breast carcinoma specimens. In this study, minor groove binding (MGB)-TaqMan real time PCR was used to detect the presence of EBV DNA in both peripheral blood and tumor samples of selected patients. METHODS: Peripheral blood and breast carcinoma specimens from 24 patients were collected. DNA was extracted and then amplified by MGB-TaqMan real time PCR. RESULTS: Of 24 breast tumor specimens, 11 (46%) were positive for EBV DNA. Of these 11 breast tumor specimens, 7 (64%) were also positive for EBV DNA in the peripheral blood, while 4 (36%) were positive for EBV DNA in the tumor, but negative in the blood. CONCLUSION: EBV was found at extremely low levels, with a mean of 0.00004 EBV genomes per cell (range 0.00014 to 0.00001 EBV genomes per cell). Furthermore, our finding of the presence of EBV in the tumor specimens coupled to the absence of detection of EBV genomic DNA in the peripheral blood is consistent with the epithelial nature of the virus. Because of the low levels of viral DNA in tumor tissue, further studies are needed to assess the biological input of EBV in breast cancer

    Dual impact of elevated temperature on plant defence and bacterial virulence in Arabidopsis

    No full text
    Temperature is known to influence plant disease development. Here Huot et al. show that elevated temperature can enhance Pseudomonas syringae effector delivery into plant cells and suppress SA biosynthesis while also finding a temperature-sensitive branch of the SA signaling pathway in Arabidopsis

    Surveillance Network for Herpes Simplex Virus Resistance to Antiviral Drugs: 3-Year Follow-Up

    No full text
    Herpes simplex virus (HSV) infections are very common in the general population and among immunocompromised patients. Acyclovir (ACV) is an effective treatment which is widely used. We deemed it essential to conduct a wide and coordinated survey of the emergence of ACV-resistant HSV strains . We have formed a network of 15 virology laboratories which have isolated and identified, between May 1999 and April 2002, HSV type 1 (HSV-1) and HSV-2 strains among hospitalized subjects. The sensitivity of each isolate to ACV was evaluated by a colorimetric test (C. Danve, F. Morfin, D. Thouvenot, and M. Aymard, J. Virol. Methods 105:207-217, 2002). During this study, 3,900 isolated strains among 3,357 patients were collected; 55% of the patients were immunocompetent. Only six immunocompetent patients excreted ACV-resistant HSV strains (0.32%), including one female patient not treated with ACV who was infected primary by an ACV-resistant strain. Among the 54 immunocompromised patients from whom ACV-resistant HSV strains were isolated (3.5%), the bone marrow transplantation patients showed the highest prevalence of resistance (10.9%), whereas among patients infected by human immunodeficiency virus, the prevalence was 4.2%. In 38% of the cases, the patients who excreted the ACV-resistant strains were treated with foscarnet (PFA), and 61% of them developed resistance to PFA. The collection of a large number of isolates enabled an evaluation of the prevalence of resistance of HSV strains to antiviral drugs to be made. This prevalence has remained stable over the last 10 years, as much among immunocompetent patients as among immunocompromised patients
    corecore