196 research outputs found

    Pulsating Variable Stars in the Coma Berenices dwarf spheroidal galaxy

    Full text link
    We present B, V, I time-series photometry of the Coma Berenices dwarf spheroidal galaxy, a faint Milky Way satellite, recently discovered by the Sloan Digital Sky Survey. We have obtained V, B-V and V, V-I color-magnitude diagrams that reach V~23.0-23.2 mag showing the galaxy turnoff at V~21.7 mag, and have performed the first study of the variable star population of this new Milky Way companion. Two RR Lyrae stars (a fundamental-mode -RRab- and a first overtone -RRc- pulsator) and a short period variable with period P=0.12468 days were identified in the galaxy. The RRab star has a rather long period of P_ab=0.66971 days and is about 0.2 mag brighter than the RRc variable and other non-variable stars on the galaxy horizontal branch. In the period-amplitude diagram the RRab variable falls closer to the loci of Oosterhoff type-II systems and evolved fundamental-mode RR Lyrae stars in the Galactic globular cluster M3. The average apparent magnitude of the galaxy horizontal branch, =18.64+-0.04 mag, leads to a distance modulus for the Coma dSph mu_0=18.13+-0.08 mag, corresponding to a distance d=42^{+2}_{-1} kpc, by adopting a reddening E(B-V) = 0.045 +- 0.015 mag and a metallicity [Fe/H]=-2.53 +- 0.05 dex.Comment: 14 pages, 3 figures, Accepted for publication in ApJ

    Weak Galactic Halo--Fornax dSph Connection from RR Lyrae Stars

    Get PDF
    For the first time accurate pulsation properties of the ancient variable stars of the Fornax dwarf spheroidal galaxy (dSph) are discussed in the broad context of galaxy formation and evolution. Homogeneous multi-band BVIBVI optical photometry of spanning {\it twenty} years has allowed us to identify and characterize more than 1400 RR Lyrae stars (RRLs) in this galaxy. Roughly 70\% are new discoveries. We investigate the period-amplitude distribution and find that Fornax shows a lack of High Amplitude (A_V\gsim0.75 mag) Short Period fundamental-mode RRLs (P\lsim0.48 d, HASPs). These objects occur in stellar populations more metal-rich than [Fe/H]∌\sim-1.5 and they are common in the Galactic halo (Halo) and in globulars. This evidence suggests that old (age older than 10 Gyr) Fornax stars are relatively metal-poor. A detailed statistical analysis of the role of the present-day Fornax dSph in reproducing the Halo period distribution shows that it can account for only a few to 20\% of the Halo when combined with RRLs in massive dwarf galaxies (Sagittarius dSph, Large Magellanic Cloud). This finding indicates that Fornax-like systems played a minor role in building up the Halo when compared with massive dwarfs. We also discuss the occurrence of HASPs in connection with the luminosity and the early chemical composition of nearby dwarf galaxies. We find that, independently of their individual star formation histories, bright (M_V\lsim-13.5 mag) galaxies have HASPs, whereas faint ones (M_V\gsim-11 mag) do not. Interestingly enough, Fornax belongs to a luminosity range (--11<<MV<_V<--13.5 mag) in which the occurrence of HASPs appears to be correlated with the early star formation and chemical enrichment of the host galaxy.Comment: 7 pages, 5 figures, A&A, accepte

    Probing the early chemical evolution of the Sculptor dSph with purely old stellar tracers

    Get PDF
    We present the metallicity distribution of a sample of 471 RR Lyrae (RRL) stars in the Sculptor dSph, obtained from the II-band Period-Luminosity relation. It is the first time that the early chemical evolution of a dwarf galaxy is characterized in such a detailed and quantitative way, using photometric data alone. We find a broad metallicity distribution (FWHM=0.8 dex) that is peaked at [Fe/H]≃\simeq-1.90 dex, in excellent agreement with literature values obtained from spectroscopic data. Moreover, we are able to directly trace the metallicity gradient out to a radius of ∌\sim55 arcmin. We find that in the outer regions (r>∌>\sim32 arcmin) the slope of the metallicity gradient from the RRLs (-0.025 dex arcmin−1^{-1}) is comparable to the literature values based on red giant (RG) stars. However, in the central part of Sculptor we do not observe the latter gradients. This suggests that there is a more metal-rich and/or younger population in Sculptor that does not produce RRLs. This scenario is strengthened by the observation of a metal-rich peak in the metallicity distribution of RG stars by other authors, which is not present in the metallicity distribution of the RRLs within the same central area.Comment: 5 pages, 4 figures. Accepted for publication on MNRAS Letter

    Variable stars in Local Group Galaxies - II. Sculptor dSph

    Get PDF
    We present the identification of 634 variable stars in the Milky Way dSph satellite Sculptor based on archival ground-based optical observations spanning ∌\sim24 years and covering ∌\sim 2.5 deg2^2. We employed the same methodologies as the "Homogeneous Photometry" series published by Stetson. In particular, we have identified and characterized one of the largest (536) RR Lyrae samples so far in a Milky Way dSph satellite. We have also detected four Anomalous Cepheids, 23 SX Phoenicis stars, five eclipsing binaries, three field variable stars, three peculiar variable stars located above the horizontal branch - near to the locus of BL Herculis - that we are unable to classify properly. Additionally we identify 37 Long Period Variables plus 23 probable variable stars, for which the current data do not allow us to determine the period. We report positions and finding charts for all the variable stars, and basic properties (period, amplitude, mean magnitude) and light curves for 574 of them. We discuss the properties of the RR Lyrae stars in the Bailey diagram, which supports the coexistence of subpopulations with different chemical compositions. We estimate the mean mass of Anomalous Cepheids (∌\sim1.5M⊙_{\odot}) and SX Phoenicis stars (∌\sim1M⊙_{\odot}). We discuss in detail the nature of the former. The connections between the properties of the different families of variable stars are discussed in the context of the star formation history of the Sculptor dSph galaxy.Comment: 22 pages, 17 figures, 13 tables. Accepted for publication on MNRA

    Variable Stars in Local Group Galaxies. IV. RR Lyrae stars in the central regions of the low-density galaxy Crater II

    Get PDF
    We present a search and analysis of variable stars in the recently discovered Crater~II dwarf galaxy. Based on BB, VV, II data collected with the Isaac Newton Telescope (FoV∌\sim0.44 square degrees) we detected 37 variable stars, of which 34 are bone-fide RR Lyrae stars of Crater~II (28 RRab, 4 RRc, 2 RRd). We applied the metal-independent (VV, B−VB-V) Period--Wesenheit relation and derived a true distance modulus (ÎŒ\mu = 20.30±\pm0.08 mag (σ\sigma=0.16 mag). Individual metallicities for RR Lyrae stars were derived by inversion of the predicted II-band Period-Luminosity relation. We find a mean metallicity of [Fe/H]=-1.64 and a standard deviation of σ[Fe/H]\sigma_{[Fe/H]} =0.21 dex, compatible with either negligible or vanishing intrinsic metallicity dispersion. The analysis of the Colour-Magnitude Diagram reveals a stark paucity of blue horizontal branch stars, at odds with other Galactic dwarfs, and globular clusters with similar metal abundances.Comment: 14 pages, 8 figures, accepted for publications on MNRAS. Time series photometry is available in the manuscript source ta

    A Photometric Study of the Outer Halo Globular Cluster NGC 5824

    Get PDF
    Multi-wavelength CCD photometry over 21 years has been used to produce deep color-magnitude diagrams together with light curves for the variables in the Galactic globular cluster NGC 5824. Twenty-one new cluster RR Lyrae stars are identified, bringing the total to 47, of which 42 have reliable periods determined for the first time. The color-magnitude diagram is matched using BaSTI isochrones with age of 1313~Gyr. and reddening is found to be E(B−V)=0.15±0.02E(B-V) = 0.15 \pm0.02; using the period-Wesenheit relation in two colors the distance modulus is (m−M)0=17.45±0.07(m-M)_0=17.45 \pm 0.07 corresponding to a distance of 30.9 Kpc. The observations show no signs of populations that are significantly younger than the 1313~Gyr stars. The width of the red giant branch does not allow for a spread in [Fe/H] greater than σ=0.05\sigma = 0.05 dex, and there is no photometric evidence for widened or parallel sequences. The V,cUBIV, c_{UBI} pseudo-color magnitude diagram shows a bifurcation of the red giant branch that by analogy with other clusters is interpreted as being due to differing spectral signatures of the first (75\%) and second (25\%) generations of stars whose age difference is close enough that main sequence turnoffs in the color-magnitude diagram are unresolved. The cluster main sequence is visible against the background out to a radial distance of ∌17\sim17 arcmin. We conclude that NGC 5824 appears to be a classical Oosterhoff Type II globular cluster, without overt signs of being a remnant of a now-disrupted dwarf galaxy.Comment: 26 pages, 15 figures, 4 tables, accepted for publication in Astronomical Journa

    Stellar Archaeology in the Galactic halo with the Ultra-Faint Dwarfs: VI. Ursa Major II

    Full text link
    We present a B, V color-magnitude diagram (CMD) of the Milky Way dwarf satellite Ursa Major II (UMa II), spanning the magnitude range from V ~ 15 to V ~ 23.5 mag and extending over a 18 {\times} 18 arcmin2 area centered on the galaxy. Our photometry goes down to about 2 magnitudes below the galaxy's main sequence turn-off, that we detected at V ~ 21.5 mag. We have discovered a bona-fide RR Lyrae variable star in UMa II, which we use to estimate a conservative dereddened distance modulus for the galaxy of (m-M)0 = 17.70{\pm}0.04{\pm}0.12 mag, where the first error accounts for the uncertainties of the calibrated photometry, and the second reflects our lack of information on the metallicity of the star. The corresponding distance to UMa II is 34.7 {\pm} 0.6 ({\pm} 2.0) kpc. Our photometry shows evidence of a spread in the galaxy subgiant branch, compatible with a spread in metal abundance in the range between Z=0.0001 and Z=0.001. Based on our estimate of the distance, a comparison of the fiducial lines of the Galactic globular clusters (GCs) M68 and M5 ([Fe/H]=-2.27 {\pm} 0.04 dex and -1.33 {\pm} 0.02 dex, respectively), with the position on the CMD of spectroscopically confirmed galaxy members, may suggest the existence of stellar populations of different metal abundance/age in the central region of UMa II.Comment: To appear in Ap

    Shapley Supercluster Survey: Construction of the photometric catalogues and i-band data release

    Get PDF
    The Shapley Supercluster Survey is a multi-wavelength survey covering an area of ∌23 degÂČ (∌260 MpcÂČ at z = 0.048) around the supercluster core, including nine Abell and two poor clusters, having redshifts in the range 0.045–0.050. The survey aims to investigate the role of the cluster-scale mass assembly on the evolution of galaxies, mapping the effects of the environment from the cores of the clusters to their outskirts and along the filaments. The optical (ugri) imaging acquired with OmegaCAM on the VLT Survey Telescope is essential to achieve the project goals providing accurate multi-band photometry for the galaxy population down to m∗ + 6. We describe the methodology adopted to construct the optical catalogues and to separate extended and point-like sources. The catalogues reach average 5σ limiting magnitudes within a 3 arcsec diameter aperture of ugri = [24.4,24.6,24.1,23.3] and are 93 per cent complete down to ugri = [23.8,23.8,23.5,22.0] mag, corresponding to ∌m∗ r + 8.5. The data are highly uniform in terms of observing conditions and all acquired with seeing less than 1.1 arcsec full width at half-maximum. The median seeing in r band is 0.6 arcsec, corresponding to 0.56 kpc h⁻Âč 70 at z = 0.048. While the observations in the u, g and r bands are still ongoing, the i-band observations have been completed, and we present the i-band catalogue over the whole survey area. The latter is released and it will be regularly updated, through the use of the Virtual Observatory tools. This includes 734 319 sources down to i = 22.0 mag and it is the first optical homogeneous catalogue at such a depth, covering the central region of the Shapley supercluster

    The distance to the LMC cluster Reticulum from the K-band Period-Luminosity-Metallicity relation of RR Lyrae stars

    Full text link
    We present new and accurate Near-Infrared J and Ks-band data of the Large Magellanic Cloud cluster Reticulum. Data were collected with SOFI available at NTT and covering an area of approximately (5 x 5) arcmin^2 around the center of the cluster. Current data allowed us to derive accurate mean K-band magnitudes for 21 fundamental and 9 first overtone RR Lyrae stars. On the basis of the semi-empirical K-band Period-Luminosity-Metallicity relation we have recently derived, we find that the absolute distance to this cluster is 18.52 +- 0.005 (random) +- 0.117 (systematic). Note that the current error budget is dominated by systematic uncertainty affecting the absolute zero-point calibration and the metallicity scale.Comment: 14 pages, 2 figures, ApJ accepted. Full resolution figure 1 on request ([email protected]
    • 

    corecore