2,134 research outputs found
Low-speed aerodynamic characteristics of a 0.08-scale YF-17 airplane model at high angles of attack and sideslip
Data were obtained with and without the nose boom and with several strake configurations; also, data were obtained for various control surface deflections. Analysis of the results revealed that selected strake configurations adequately provided low Reynolds number simulation of the high Reynolds number characteristics. The addition of the boom in general tended to reduce the Reynolds number effects
Superdiffusion in Decoupled Continuous Time Random Walks
Continuous time random walk models with decoupled waiting time density are
studied. When the spatial one jump probability density belongs to the Levy
distribution type and the total time transition is exponential a generalized
superdiffusive regime is established. This is verified by showing that the
square width of the probability distribution (appropriately defined)grows as
with when . An important connection
of our results and those of Tsallis' nonextensive statistics is shown. The
normalized q-expectation value of calculated with the corresponding
probability distribution behaves exactly as in the asymptotic
limit.Comment: 9 pages (.tex file), 1 Postscript figures, uses revtex.st
Experience with covered stents for the management of hemodialysis polytetrafluoroethylene graft seromas
Prosthetic graft seromas is a rare complication that has been traditionally managed with open methods using partial graft replacement and open drainage. We report the first two cases of hemodialysis graft seromas successfully treated with a covered stent. Both patients underwent arteriovenous graft placement from the brachial artery to the axillary vein using a standard wall, tapered 4 to 7 mm polytetrafluoroethylene graft, but developed a seroma at the arterial end of the graft. Unsuccessful attempts were made to treat these seromas with percutaneous and open drainage. In both patients, an 8 mm × 50 mm Wallgraft (Boston Scientific, Natick, Mass) was retrogradely deployed “bareback” at the arterial end of the graft allowing for complete resolution of the graft seromas
Bulk Mediated Surface Diffusion: Non Markovian Desorption with Finite First Moment
Here we address a fundamental issue in surface physics: the dynamics of
adsorbed molecules. We study this problem when the particle's desorption is
characterized by a non Markovian process, while the particle's adsorption and
its motion in the bulk are governed by a Markovian dynamics. We study the
diffusion of particles in a semi-infinite cubic lattice, and focus on the
effective diffusion process at the interface . We calculate analytically
the conditional probability to find the particle on the plane as well as
the surface dispersion as functions of time. The comparison of these results
with Monte Carlo simulations show an excellent agreement.Comment: 16 pages, 7 figs. European Physical Journal B (in press
Monte-Carlo simulations of the recombination dynamics in porous silicon
A simple lattice model describing the recombination dynamics in visible light
emitting porous Silicon is presented. In the model, each occupied lattice site
represents a Si crystal of nanometer size. The disordered structure of porous
Silicon is modeled by modified random percolation networks in two and three
dimensions. Both correlated (excitons) and uncorrelated electron-hole pairs
have been studied. Radiative and non-radiative processes as well as hopping
between nearest neighbor occupied sites are taken into account. By means of
extensive Monte-Carlo simulations, we show that the recombination dynamics in
porous Silicon is due to a dispersive diffusion of excitons in a disordered
arrangement of interconnected Si quantum dots. The simulated luminescence decay
for the excitons shows a stretched exponential lineshape while for uncorrelated
electron-hole pairs a power law decay is suggested. Our results successfully
account for the recombination dynamics recently observed in the experiments.
The present model is a prototype for a larger class of models describing
diffusion of particles in a complex disordered system.Comment: 33 pages, RevTeX, 19 figures available on request to
[email protected]
Levy flights in quenched random force fields
Levy flights, characterized by the microscopic step index f, are for f<2 (the
case of rare events) considered in short range and long range quenched random
force fields with arbitrary vector character to first loop order in an
expansion about the critical dimension 2f-2 in the short range case and the
critical fall-off exponent 2f-2 in the long range case. By means of a dynamic
renormalization group analysis based on the momentum shell integration method,
we determine flows, fixed point, and the associated scaling properties for the
probability distribution and the frequency and wave number dependent diffusion
coefficient. Unlike the case of ordinary Brownian motion in a quenched force
field characterized by a single critical dimension or fall-off exponent d=2,
two critical dimensions appear in the Levy case. A critical dimension (or
fall-off exponent) d=f below which the diffusion coefficient exhibits anomalous
scaling behavior, i.e, algebraic spatial behavior and long time tails, and a
critical dimension (or fall-off exponent) d=2f-2 below which the force
correlations characterized by a non trivial fixed point become relevant. As a
general result we find in all cases that the dynamic exponent z, characterizing
the mean square displacement, locks onto the Levy index f, independent of
dimension and independent of the presence of weak quenched disorder.Comment: 27 pages, Revtex file, 17 figures in ps format attached, submitted to
Phys. Rev.
Late Maastrichtian carbon isotope stratigraphy and cyclostratigraphy of the Newfoundland Margin (Site U1403, IODP Expedition 342)
Earth’s climate during the Maastrichtian (latest Cretaceous) was punctuated by brief warming and cooling episodes, accompanied by perturbations of the global carbon cycle. Superimposed on a long-term cooling trend, the middle Maastrichtian is characterized by deep-sea warming and relatively high values of stable carbon-isotope ratios, followed by strong climatic variability towards the end of the Cretaceous. A lack of knowledge on the timing of climatic change inhibits our understanding of underlying causal mechanisms. We present an integrated stratigraphy from Integrated Ocean Drilling Program (IODP) Site U1403, providing an expanded deep ocean record from the North Atlantic (Expedition 342, Newfoundland Margin). Distinct sedimentary cyclicity suggests that orbital forcing played a major role in depositional processes, which is confirmed by statistical analyses of high resolution elemental data obtained by X-ray fluorescence (XRF) core scanning. Astronomical calibration reveals that the investigated interval encompasses seven 405-kyr cycles (Ma4051 to Ma4057) and spans the 2.8 Myr directly preceding the Cretaceous/Paleocene (K/Pg) boundary. A high-resolution carbon-isotope record from bulk carbonates allows us to identify global trends in the late Maastrichtian carbon cycle. Low-amplitude variations (up to 0.4‰) in carbon isotopes at Site U1403 match similar scale variability in records from Tethyan and Pacific open-ocean sites. Comparison between Site U1403 and the hemipelagic restricted basin of the Zumaia section (northern Spain), with its own well-established independent cyclostratigraphic framework, is more complex. Whereas the pre-K/Pg oscillations and the negative values of the Mid-Maastrichtian Event (MME) can be readily discerned in both the Zumaia and U1403 records, patterns diverge during a ~ 1 Myr period in the late Maastrichtian (67.8–66.8 Ma), with Site U1403 more reliably reflecting global carbon cycling. Our new carbon isotope record and cyclostratigraphy offer promise for Site U1403 to serve as a future reference section for high-resolution studies of late Maastrichtian paleoclimatic change
A kinematic analysis of the spine during rugby scrummaging on natural and synthetic turfs
Artificial surfaces are now an established alternative to grass (natural) surfaces in rugby union. Little is known, however, about their potential to reduce injury. This study characterises the spinal kinematics of rugby union hookers during scrummaging on third-generation synthetic (3G) and natural pitches. The spine was sectioned into five segments, with inertial sensors providing three-dimensional kinematic data sampled at 40 Hz/sensor. Twenty-two adult, male community club and university-level hookers were recruited. An equal number were analysed whilst scrummaging on natural or synthetic turf. Players scrummaging on synthetic turf demonstrated less angular velocity in the lower thoracic spine for right and left lateral bending and right rotation. The general reduction in the range of motion and velocities, extrapolated over a prolonged playing career, may mean that the synthetic turf could result in fewer degenerative injuries. It should be noted, however, that this conclusion considers only the scrummaging scenario
- …