6,691 research outputs found
Speeding up shortest path algorithms
Given an arbitrary, non-negatively weighted, directed graph we
present an algorithm that computes all pairs shortest paths in time
, where is the number of
different edges contained in shortest paths and is a running
time of an algorithm to solve a single-source shortest path problem (SSSP).
This is a substantial improvement over a trivial times application of
that runs in . In our algorithm we use
as a black box and hence any improvement on results also in improvement
of our algorithm.
Furthermore, a combination of our method, Johnson's reweighting technique and
topological sorting results in an all-pairs
shortest path algorithm for arbitrarily-weighted directed acyclic graphs.
In addition, we also point out a connection between the complexity of a
certain sorting problem defined on shortest paths and SSSP.Comment: 10 page
Numerical Solution of Hard-Core Mixtures
We study the equilibrium phase diagram of binary mixtures of hard spheres as
well as of parallel hard cubes. A superior cluster algorithm allows us to
establish and to access the demixed phase for both systems and to investigate
the subtle interplay between short-range depletion and long-range demixing.Comment: 4 pages, 2 figure
Phase behaviour of charged colloidal sphere dispersions with added polymer chains
We study the stability of mixtures of highly screened repulsive charged
spheres and non-adsorbing ideal polymer chains in a common solvent using free
volume theory. The effective interaction between charged colloids in an aqueous
salt solution is described by a screened-Coulomb pair potential, which
supplements the pure hard-sphere interaction. The ideal polymer chains are
treated as spheres that are excluded from the colloids by a hard-core
interaction, whereas the interaction between two ideal chains is set to zero.
In addition, we investigate the phase behaviour of charged colloid-polymer
mixtures in computer simulations, using the two-body (Asakura-Oosawa pair
potential) approximation to the effective one-component Hamiltonian of the
charged colloids. Both our results obtained from simulations and from free
volume theory show similar trends. We find that the screened-Coulomb repulsion
counteracts the effect of the effective polymer-mediated attraction. For
mixtures of small polymers and relatively large charged colloidal spheres, the
fluid-crystal transition shifts to significantly larger polymer concentrations
with increasing range of the screened-Coulomb repulsion. For relatively large
polymers, the effect of the screened-Coulomb repulsion is weaker. The resulting
fluid-fluid binodal is only slightly shifted towards larger polymer
concentrations upon increasing the range of the screened-Coulomb repulsion. In
conclusion, our results show that the miscibility of dispersions containing
charged colloids and neutral non-adsorbing polymers increases, upon increasing
the range of the screened-Coulomb repulsion, or upon lowering the salt
concentration, especially when the polymers are small compared to the colloids.Comment: 25 pages,13 figures, accepted for publication on J.Phys.:Condens.
Matte
Depletion potential in hard-sphere mixtures: theory and applications
We present a versatile density functional approach (DFT) for calculating the
depletion potential in general fluid mixtures. In contrast to brute force DFT,
our approach requires only the equilibrium density profile of the small
particles {\em before} the big (test) particle is inserted. For a big particle
near a planar wall or a cylinder or another fixed big particle the relevant
density profiles are functions of a single variable, which avoids the numerical
complications inherent in brute force DFT. We implement our approach for
additive hard-sphere mixtures. By investigating the depletion potential for
high size asymmetries we assess the regime of validity of the well-known
Derjaguin approximation for hard-sphere mixtures and argue that this fails. We
provide an accurate parametrization of the depletion potential in hard-sphere
fluids which should be useful for effective Hamiltonian studies of phase
behavior and colloid structure
Formal change impact analyses for emulated control software
Processor emulators are a software tool for allowing legacy computer programs to be executed on a modern processor. In the past emulators have been used in trivial applications such as maintenance of video games. Now, however, processor emulation is being applied to safety-critical control systems, including military avionics. These applications demand utmost guarantees of correctness, but no verification techniques exist for proving that an emulated system preserves the original systemās functional and timing properties. Here we show how this can be done by combining concepts previously used for reasoning about real-time program compilation, coupled with an understanding of the new and old software architectures. In particular, we show how both the old and new systems can be given a common semantics, thus allowing their behaviours to be compared directly
Structure Function of Polymer Nematic Liquid Crystals: A Monte Carlo Simulation
We present a Monte Carlo simulation of a polymer nematic for varying volume
fractions, concentrating on the structure function of the sample. We achieve
nematic ordering with stiff polymers made of spherical monomers that would
otherwise not form a nematic state. Our results are in good qualitative
agreement with theoretical and experimental predictions, most notably the
bowtie pattern in the static structure function.Comment: 10 pages, plain TeX, macros included, 3 figures available from
archive. Published versio
A robust semantics hides fewer errors
In this paper we explore how formal models are interpreted and to what degree meaning is captured in the formal semantics and to what degree it remains in the informal interpretation of the semantics. By applying a robust approach to the definition of refinement and semantics, favoured by the event-based community, to state-based theory we are able to move some aspects from the informal interpretation into the formal semantics
Phase behavior and structure of model colloid-polymer mixtures confined between two parallel planar walls
Using Gibbs ensemble Monte Carlo simulations and density functional theory we
investigate the fluid-fluid demixing transition in inhomogeneous
colloid-polymer mixtures confined between two parallel plates with separation
distances between one and ten colloid diameters covering the complete range
from quasi two-dimensional to bulk-like behavior. We use the
Asakura-Oosawa-Vrij model in which colloid-colloid and colloid-polymer
interactions are hard-sphere like, whilst the pair potential between polymers
vanishes. Two different types of confinement induced by a pair of parallel
walls are considered, namely either through two hard walls or through two
semi-permeable walls that repel colloids but allow polymers to freely
penetrate. For hard (semi-permeable) walls we find that the capillary binodal
is shifted towards higher (lower) polymer fugacities and lower (higher) colloid
fugacities as compared to the bulk binodal; this implies capillary condensation
(evaporation) of the colloidal liquid phase in the slit. A macroscopic
treatment is provided by a novel symmetric Kelvin equation for general binary
mixtures, based on the proximity in chemical potentials of statepoints at
capillary coexistence and the reference bulk coexistence. Results for capillary
binodals compare well with those obtained from the classic version of the
Kelvin equation due to Evans and Marini Bettolo Marconi [J. Chem. Phys. 86,
7138 (1987)], and are quantitatively accurate away from the fluid-fluid
critical point, even at small wall separations. For hard walls the density
profiles of polymers and colloids inside the slit display oscillations due to
packing effects for all statepoints. For semi-permeable walls either similar
structuring or flat profiles are found, depending on the statepoint considered.Comment: 15 pages, 13 figure
Assessment of the cervical range of motion over time, differences between results of the Flock of Birds and the EDI-320:A comparison between an electromagnetic tracking system and an electronic inclinometer
The objective of this study was to analyse cervical range of motion, assessed over time by means of a digital inclinometer (EDI-320) and a three-dimensional electromagnetic tracking device (Flock of Birds). The maximum active cervical range of motion was assessed with two measurement devices in three sessions over time, with 6-week intervals. In total, 26 women and 24 men (mean age: 44.4, SD: 9.9) without known pathology of the cervical spine participated. Four movements were measured axial rotation with the cervical spine in a flexed and in an extended position, flexion-extension, and lateral bending. The results showed that the factor time was significant for rotation in extension and rotation in flexion. The factor device was significant for all movements measured. and the interaction term between time and device was significant for all movements except rotation in extension. The Flock of Birds measured significantly higher ranges of motion on all motions except for lateral bending. A substantial variation in cervical range of motion was observed over time (ranging from -5.6 to 8.1) as well as between devices (ranging from - 13.1 to 29.9). Substantial and significant differences in cervical range of motion were found over time as well as differences between the Flock of Birds and the EDI-320. (C) 2007 Elsevier Ltd. All rights reserved
- ā¦