6,691 research outputs found

    Speeding up shortest path algorithms

    Full text link
    Given an arbitrary, non-negatively weighted, directed graph G=(V,E)G=(V,E) we present an algorithm that computes all pairs shortest paths in time O(māˆ—n+mlgā”n+nTĻˆ(māˆ—,n))\mathcal{O}(m^* n + m \lg n + nT_\psi(m^*, n)), where māˆ—m^* is the number of different edges contained in shortest paths and TĻˆ(māˆ—,n)T_\psi(m^*, n) is a running time of an algorithm to solve a single-source shortest path problem (SSSP). This is a substantial improvement over a trivial nn times application of Ļˆ\psi that runs in O(nTĻˆ(m,n))\mathcal{O}(nT_\psi(m,n)). In our algorithm we use Ļˆ\psi as a black box and hence any improvement on Ļˆ\psi results also in improvement of our algorithm. Furthermore, a combination of our method, Johnson's reweighting technique and topological sorting results in an O(māˆ—n+mlgā”n)\mathcal{O}(m^*n + m \lg n) all-pairs shortest path algorithm for arbitrarily-weighted directed acyclic graphs. In addition, we also point out a connection between the complexity of a certain sorting problem defined on shortest paths and SSSP.Comment: 10 page

    Numerical Solution of Hard-Core Mixtures

    Full text link
    We study the equilibrium phase diagram of binary mixtures of hard spheres as well as of parallel hard cubes. A superior cluster algorithm allows us to establish and to access the demixed phase for both systems and to investigate the subtle interplay between short-range depletion and long-range demixing.Comment: 4 pages, 2 figure

    Phase behaviour of charged colloidal sphere dispersions with added polymer chains

    Full text link
    We study the stability of mixtures of highly screened repulsive charged spheres and non-adsorbing ideal polymer chains in a common solvent using free volume theory. The effective interaction between charged colloids in an aqueous salt solution is described by a screened-Coulomb pair potential, which supplements the pure hard-sphere interaction. The ideal polymer chains are treated as spheres that are excluded from the colloids by a hard-core interaction, whereas the interaction between two ideal chains is set to zero. In addition, we investigate the phase behaviour of charged colloid-polymer mixtures in computer simulations, using the two-body (Asakura-Oosawa pair potential) approximation to the effective one-component Hamiltonian of the charged colloids. Both our results obtained from simulations and from free volume theory show similar trends. We find that the screened-Coulomb repulsion counteracts the effect of the effective polymer-mediated attraction. For mixtures of small polymers and relatively large charged colloidal spheres, the fluid-crystal transition shifts to significantly larger polymer concentrations with increasing range of the screened-Coulomb repulsion. For relatively large polymers, the effect of the screened-Coulomb repulsion is weaker. The resulting fluid-fluid binodal is only slightly shifted towards larger polymer concentrations upon increasing the range of the screened-Coulomb repulsion. In conclusion, our results show that the miscibility of dispersions containing charged colloids and neutral non-adsorbing polymers increases, upon increasing the range of the screened-Coulomb repulsion, or upon lowering the salt concentration, especially when the polymers are small compared to the colloids.Comment: 25 pages,13 figures, accepted for publication on J.Phys.:Condens. Matte

    Depletion potential in hard-sphere mixtures: theory and applications

    Full text link
    We present a versatile density functional approach (DFT) for calculating the depletion potential in general fluid mixtures. In contrast to brute force DFT, our approach requires only the equilibrium density profile of the small particles {\em before} the big (test) particle is inserted. For a big particle near a planar wall or a cylinder or another fixed big particle the relevant density profiles are functions of a single variable, which avoids the numerical complications inherent in brute force DFT. We implement our approach for additive hard-sphere mixtures. By investigating the depletion potential for high size asymmetries we assess the regime of validity of the well-known Derjaguin approximation for hard-sphere mixtures and argue that this fails. We provide an accurate parametrization of the depletion potential in hard-sphere fluids which should be useful for effective Hamiltonian studies of phase behavior and colloid structure

    Formal change impact analyses for emulated control software

    Get PDF
    Processor emulators are a software tool for allowing legacy computer programs to be executed on a modern processor. In the past emulators have been used in trivial applications such as maintenance of video games. Now, however, processor emulation is being applied to safety-critical control systems, including military avionics. These applications demand utmost guarantees of correctness, but no verification techniques exist for proving that an emulated system preserves the original systemā€™s functional and timing properties. Here we show how this can be done by combining concepts previously used for reasoning about real-time program compilation, coupled with an understanding of the new and old software architectures. In particular, we show how both the old and new systems can be given a common semantics, thus allowing their behaviours to be compared directly

    Structure Function of Polymer Nematic Liquid Crystals: A Monte Carlo Simulation

    Full text link
    We present a Monte Carlo simulation of a polymer nematic for varying volume fractions, concentrating on the structure function of the sample. We achieve nematic ordering with stiff polymers made of spherical monomers that would otherwise not form a nematic state. Our results are in good qualitative agreement with theoretical and experimental predictions, most notably the bowtie pattern in the static structure function.Comment: 10 pages, plain TeX, macros included, 3 figures available from archive. Published versio

    A robust semantics hides fewer errors

    Get PDF
    In this paper we explore how formal models are interpreted and to what degree meaning is captured in the formal semantics and to what degree it remains in the informal interpretation of the semantics. By applying a robust approach to the definition of refinement and semantics, favoured by the event-based community, to state-based theory we are able to move some aspects from the informal interpretation into the formal semantics

    Phase behavior and structure of model colloid-polymer mixtures confined between two parallel planar walls

    Full text link
    Using Gibbs ensemble Monte Carlo simulations and density functional theory we investigate the fluid-fluid demixing transition in inhomogeneous colloid-polymer mixtures confined between two parallel plates with separation distances between one and ten colloid diameters covering the complete range from quasi two-dimensional to bulk-like behavior. We use the Asakura-Oosawa-Vrij model in which colloid-colloid and colloid-polymer interactions are hard-sphere like, whilst the pair potential between polymers vanishes. Two different types of confinement induced by a pair of parallel walls are considered, namely either through two hard walls or through two semi-permeable walls that repel colloids but allow polymers to freely penetrate. For hard (semi-permeable) walls we find that the capillary binodal is shifted towards higher (lower) polymer fugacities and lower (higher) colloid fugacities as compared to the bulk binodal; this implies capillary condensation (evaporation) of the colloidal liquid phase in the slit. A macroscopic treatment is provided by a novel symmetric Kelvin equation for general binary mixtures, based on the proximity in chemical potentials of statepoints at capillary coexistence and the reference bulk coexistence. Results for capillary binodals compare well with those obtained from the classic version of the Kelvin equation due to Evans and Marini Bettolo Marconi [J. Chem. Phys. 86, 7138 (1987)], and are quantitatively accurate away from the fluid-fluid critical point, even at small wall separations. For hard walls the density profiles of polymers and colloids inside the slit display oscillations due to packing effects for all statepoints. For semi-permeable walls either similar structuring or flat profiles are found, depending on the statepoint considered.Comment: 15 pages, 13 figure

    Assessment of the cervical range of motion over time, differences between results of the Flock of Birds and the EDI-320:A comparison between an electromagnetic tracking system and an electronic inclinometer

    Get PDF
    The objective of this study was to analyse cervical range of motion, assessed over time by means of a digital inclinometer (EDI-320) and a three-dimensional electromagnetic tracking device (Flock of Birds). The maximum active cervical range of motion was assessed with two measurement devices in three sessions over time, with 6-week intervals. In total, 26 women and 24 men (mean age: 44.4, SD: 9.9) without known pathology of the cervical spine participated. Four movements were measured axial rotation with the cervical spine in a flexed and in an extended position, flexion-extension, and lateral bending. The results showed that the factor time was significant for rotation in extension and rotation in flexion. The factor device was significant for all movements measured. and the interaction term between time and device was significant for all movements except rotation in extension. The Flock of Birds measured significantly higher ranges of motion on all motions except for lateral bending. A substantial variation in cervical range of motion was observed over time (ranging from -5.6 to 8.1) as well as between devices (ranging from - 13.1 to 29.9). Substantial and significant differences in cervical range of motion were found over time as well as differences between the Flock of Birds and the EDI-320. (C) 2007 Elsevier Ltd. All rights reserved
    • ā€¦
    corecore