9,039 research outputs found
Landscape influence on small-scale water temperature variations in a moorland catchment
Acknowledgements Iain Malcolm and staff at Marine Scotland (Pitlochry) are thanked for the provision of data from the AWS. Finally, the two anonymous reviewers are greatly acknowledged for their constructive comments.Peer reviewedPostprin
Modelling landscape controls on dissolved organic carbon sources and fluxes to streams
Acknowledgments We thank the Natural Environment Research Council NERC (project NE/K000268/1) for funding. Iain Malcolm and staff at Marine Scotland (Pitlochry) are also thanked for the provision of data from the AWS as are the Scottish Environmental Protection Agency and British Atmospheric Data Centre for the provision of meteorological data.Peer reviewedPublisher PD
SMIL State: an architecture and implementation for adaptive time-based web applications
In this paper we examine adaptive time-based web applications (or presentations). These are interactive presentations where time dictates which parts of the application are presented (providing the major structuring paradigm), and that require interactivity and other dynamic adaptation. We investigate the current technologies available to create such presentations and their shortcomings, and suggest a mechanism for addressing these shortcomings. This mechanism, SMIL State, can be used to add user-defined state to declarative time-based languages such as SMIL or SVG animation, thereby enabling the author to create control flows that are difficult to realize within the temporal containment model of the host languages. In addition, SMIL State can be used as a bridging mechanism between languages, enabling easy integration of external components into the web application. Finally, SMIL State enables richer expressions for content control. This paper defines SMIL State in terms of an introductory example, followed by a detailed specification of the State model. Next, the implementation of this model is discussed. We conclude with a set of potential use cases, including dynamic content adaptation and delayed insertion of custom content such as advertisements. © 2009 Springer Science+Business Media, LLC
Stream water age distributions controlled by storage dynamics and nonlinear hydrologic connectivity : Modeling with high-resolution isotope data
Peer reviewedPublisher PD
Role of riparian wetlands and hydrological connectivity in the dynamics of stream thermal regimes
Stream temperature is a fundamental physical characteristic of rivers, influencing biological productivity and water quality. Given the implications of climate warming for stream thermal regimes, it is an important consideration in river management plans. Energy exchanges at the water–air interface, channel geomorphology, riparian vegetation and advective heat transport from the different sources of discharge can all influence stream temperature. A simple mixing equation was used to investigate heat transport and to estimate daily mean and maximum stream temperatures on the basis of mixing groundwater and near-surface flows from riparian wetlands as end-members in a peatland catchment. The resulting data were evaluated against energy balance components and saturation extent to investigate the importance of riparian wetlands in determining stream temperatures. Data fit was generally good in periods with extensive saturation; and poorest in dry periods with less hydrological connectivity, when reduced saturation and low flows increased the relative influence of energy exchange at the stream–atmosphere interface. These findings have implications in terms of climate change and land management, where the planting of riparian buffer strips to moderate water temperatures may be less effective when saturation area is extensive and hydrological connectivity is high
Using geophysical surveys to test tracer-based storage estimates in headwater catchments
Acknowledgements The authors are grateful to Stian Bradford, Chris Gabrielli, and Julie Timms for practical and logistical assistance. The provision of transport by Iain Malcolm and Ross Glover of Marine Scotland Science was greatly appreciated. We also thank the European Research Council ERC (project GA 335910 VEWA) for funding through the VeWa project and the Leverhulme Trust for funding through PLATO (RPG-2014-016).Peer reviewedPostprin
Group additivity calculation of the standard molal thermodynamic properties of aqueous amino acids, polypeptides and unfolded proteins as a function of temperature, pressure and ionization state
International audienceThermodynamic calculation of the chemical speciation of proteins and the limits of protein metastability affords a quantitative understanding of the biogeochemical constraints on the distribution of proteins within and among different organisms and chemical environments. These calculations depend on accurate determination of the ionization states and standard molal Gibbs free energies of proteins as a function of temperature and pressure, which are not generally available. Hence, to aid predictions of the standard molal thermodynamic properties of ionized proteins as a function of temperature and pressure, calculated values are given below of the standard molal thermodynamic properties at 25°C and 1 bar and the revised Helgeson-Kirkham-Flowers equations of state parameters of the structural groups comprising amino acids, polypeptides and unfolded proteins. Group additivity and correlation algorithms were used to calculate contributions by ionized and neutral sidechain and backbone groups to the standard molal Gibbs free energy (? G°), enthalpy (? H°), entropy (S°), isobaric heat capacity (C°P), volume (V°) and isothermal compressibility (?°T) of multiple reference model compounds. Experimental values of C°P, V° and ?°T at high temperature were taken from the recent literature, which ensures an internally consistent revision of the thermodynamic properties and equations of state parameters of the sidechain and backbone groups of proteins, as well as organic groups. As a result, ? G°, ? H°, S° C°P, V° and ?°T of unfolded proteins in any ionization state can be calculated up to T~-300°C and P~-5000 bars. In addition, the ionization states of unfolded proteins as a function of not only pH, but also temperature and pressure can be calculated by taking account of the degree of ionization of the sidechain and backbone groups present in the sequence. Calculations of this kind represent a first step in the prediction of chemical affinities of many biogeochemical reactions, as well as of the relative stabilities of proteins as a function of temperature, pressure, composition and intra- and extracellular chemical potentials of O2 and H2, NH3, H2PO4 and CO2
Integrated care and the working record
By default, many discussions and specifications of electronic health records or integrated care records often conceptualize the record as a passive information repository. This article presents data from a case study of work in a medical unit in a major metropolitan hospital. It shows how the clinicians tailored, re-presented and augmented clinical information to support their own roles in the delivery of care for individual patients. This is referred to as the working record: a set of complexly interrelated clinician-centred documents that are locally evolved, maintained and used to support delivery of care in conjunction with the more patient-centred chart that will be stored in the medical records department on the patient’s discharge. Implications are drawn for how an integrated care record could support the local tailorability and flexibility that underpin this working record and hence underpin practice
- …
