82 research outputs found

    Peanut (Arachis hypogaea) Expressed Sequence Tag Project: Progress and Application

    Get PDF
    Many plant ESTs have been sequenced as an alternative to whole genome sequences, including peanut because of the genome size and complexity. The US peanut research community had the historic 2004 Atlanta Genomics Workshop and named the EST project as a main priority. As of August 2011, the peanut research community had deposited 252,832 ESTs in the public NCBI EST database, and this resource has been providing the community valuable tools and core foundations for various genome-scale experiments before the whole genome sequencing project. These EST resources have been used for marker development, gene cloning, microarray gene expression and genetic map construction. Certainly, the peanut EST sequence resources have been shown to have a wide range of applications and accomplished its essential role at the time of need. Then the EST project contributes to the second historic event, the Peanut Genome Project 2010 Inaugural Meeting also held in Atlanta where it was decided to sequence the entire peanut genome. After the completion of peanut whole genome sequencing, ESTs or transcriptome will continue to play an important role to fill in knowledge gaps, to identify particular genes and to explore gene function

    Peanut gene expression profiling in developing seeds at different reproduction stages during Aspergillus parasiticus infection

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Peanut (<it>Arachis hypogaea </it>L.) is an important crop economically and nutritionally, and is one of the most susceptible host crops to colonization of <it>Aspergillus parasiticus </it>and subsequent aflatoxin contamination. Knowledge from molecular genetic studies could help to devise strategies in alleviating this problem; however, few peanut DNA sequences are available in the public database. In order to understand the molecular basis of host resistance to aflatoxin contamination, a large-scale project was conducted to generate expressed sequence tags (ESTs) from developing seeds to identify resistance-related genes involved in defense response against <it>Aspergillus </it>infection and subsequent aflatoxin contamination.</p> <p>Results</p> <p>We constructed six different cDNA libraries derived from developing peanut seeds at three reproduction stages (R5, R6 and R7) from a resistant and a susceptible cultivated peanut genotypes, 'Tifrunner' (susceptible to <it>Aspergillus </it>infection with higher aflatoxin contamination and resistant to TSWV) and 'GT-C20' (resistant to <it>Aspergillus </it>with reduced aflatoxin contamination and susceptible to TSWV). The developing peanut seed tissues were challenged by <it>A. parasiticus </it>and drought stress in the field. A total of 24,192 randomly selected cDNA clones from six libraries were sequenced. After removing vector sequences and quality trimming, 21,777 high-quality EST sequences were generated. Sequence clustering and assembling resulted in 8,689 unique EST sequences with 1,741 tentative consensus EST sequences (TCs) and 6,948 singleton ESTs. Functional classification was performed according to MIPS functional catalogue criteria. The unique EST sequences were divided into twenty-two categories. A similarity search against the non-redundant protein database available from NCBI indicated that 84.78% of total ESTs showed significant similarity to known proteins, of which 165 genes had been previously reported in peanuts. There were differences in overall expression patterns in different libraries and genotypes. A number of sequences were expressed throughout all of the libraries, representing constitutive expressed sequences. In order to identify resistance-related genes with significantly differential expression, a statistical analysis to estimate the relative abundance (<it>R</it>) was used to compare the relative abundance of each gene transcripts in each cDNA library. Thirty six and forty seven unique EST sequences with threshold of <it>R </it>> 4 from libraries of 'GT-C20' and 'Tifrunner', respectively, were selected for examination of temporal gene expression patterns according to EST frequencies. Nine and eight resistance-related genes with significant up-regulation were obtained in 'GT-C20' and 'Tifrunner' libraries, respectively. Among them, three genes were common in both genotypes. Furthermore, a comparison of our EST sequences with other plant sequences in the TIGR Gene Indices libraries showed that the percentage of peanut EST matched to <it>Arabidopsis thaliana</it>, maize (<it>Zea mays</it>), <it>Medicago truncatula</it>, rapeseed (<it>Brassica napus</it>), rice (<it>Oryza sativa</it>), soybean (<it>Glycine max</it>) and wheat (<it>Triticum aestivum</it>) ESTs ranged from 33.84% to 79.46% with the sequence identity ā‰„ 80%. These results revealed that peanut ESTs are more closely related to legume species than to cereal crops, and more homologous to dicot than to monocot plant species.</p> <p>Conclusion</p> <p>The developed ESTs can be used to discover novel sequences or genes, to identify resistance-related genes and to detect the differences among alleles or markers between these resistant and susceptible peanut genotypes. Additionally, this large collection of cultivated peanut EST sequences will make it possible to construct microarrays for gene expression studies and for further characterization of host resistance mechanisms. It will be a valuable genomic resource for the peanut community. The 21,777 ESTs have been deposited to the NCBI GenBank database with accession numbers <ext-link ext-link-type="gen" ext-link-id="ES702769">ES702769</ext-link> to <ext-link ext-link-type="gen" ext-link-id="ES724546">ES724546</ext-link>.</p

    Nestedā€association mapping (NAM)ā€based genetic dissection uncovers candidate genes for seed and pod weights in peanut ( Arachis hypogaea )

    Get PDF
    Multiparental genetic mapping populations such as nested-association mapping (NAM) havegreat potential for investigating quantitative traits and associated genomic regions leading torapid discovery of candidate genes and markers. To demonstrate the utility and power of thisapproach, two NAM populations, NAM_Tifrunner and NAM_Florida-07, were used for dissectinggenetic control of 100-pod weight (PW) and 100-seed weight (SW) in peanut. Two high-densitySNP-based genetic maps were constructed with 3341 loci and 2668 loci for NAM_Tifrunner andNAM_Florida-07, respectively. The quantitative trait locus (QTL) analysis identiļ¬ed 12 and 8major effect QTLs for PW and SW, respectively, in NAM_Tifrunner, and 13 and 11 major effectQTLs for PW and SW, respectively, in NAM_Florida-07. Most of the QTLs associated with PW andSW were mapped on the chromosomes A05, A06, B05 and B06. A genomewide associationstudy (GWAS) analysis identiļ¬ed 19 and 28 highly signiļ¬cant SNPā€“trait associations (STAs) inNAM_Tifrunner and 11 and 17 STAs in NAM_Florida-07 for PW and SW, respectively. Thesesigniļ¬cant STAs were co-localized, suggesting that PW and SW are co-regulated by severalcandidate genes identiļ¬ed on chromosomes A05, A06, B05, and B06. This study demonstratesthe utility of NAM population for genetic dissection of complex traits and performing high-resolution trait mapping in peanut

    Molecular markers and genomic resources for disease resistance in peanut-A review

    Get PDF
    Recent polyploidation of peanut genome and geographical isolation has rendered peanut to be a highly monomorphic species. Due to its narrow genetic base, cultivated peanut has been susceptible to various diseases, causing economic loss to farmers. Availability of only a few disease resistance sources in cultivated peanut has resulted in limited success using the conventional breeding practices. Also, scarcity of markers has been the major limiting factor to precisely identify the disease resistance genomic regions. Recentidentification of largenumber ofmolecular markers using advancedgenomic resources and high throughput sequencing technologies has and will continue to assist in improvement of peanut diversity and breeding. This review gives an update on recent discovery of molecular markers associated with major diseases and the available genomic resources in peanut

    Resistance to Thrips in Peanut and Implications for Management of Thrips and Thrips-Transmitted Orthotospoviruses in Peanut

    Get PDF
    Thrips are major pests of peanut (Arachis hypogaea L.) worldwide, and they serve as vectors of devastating orthotospoviruses such as Tomato spotted wilt virus (TSWV) and Groundnut bud necrosis virus (GBNV). A tremendous effort has been devoted to developing peanut cultivars with resistance to orthotospoviruses. Consequently, cultivars with moderate field resistance to viruses exist, but not much is known about host resistance to thrips. Integrating host plant resistance to thrips in peanut could suppress thrips feeding damage and reduce virus transmission, will decrease insecticide usage, and enhance sustainability in the production system. This review focuses on details of thrips resistance in peanut and identifies future directions for incorporating thrips resistance in peanut cultivars. Research on thripsā€“host interactions in peanut is predominantly limited to field evaluations of feeding damage, though, laboratory studies have revealed that peanut cultivars could differentially affect thrips feeding and thrips biology. Many runner type cultivars, field resistant to TSWV, representing diverse pedigrees evaluated against thrips in the greenhouse revealed that thrips preferred some cultivars over others, suggesting that antixenosis ā€œnon-preferenceā€ could contribute to thrips resistance in peanut. In other crops, morphological traits such as leaf architecture and waxiness and spectral reflectance have been associated with thrips non-preference. It is not clear if foliar morphological traits in peanut are associated with reduced preference or non-preference of thrips and need to be evaluated. Besides thrips non-preference, thrips larval survival to adulthood and median developmental time were negatively affected in some peanut cultivars and in a diploid peanut species Arachis diogoi (Hoehne) and its hybrids with a Virginia type cultivar, indicating that antibiosis (negative effects on biology) could also be a factor influencing thrips resistance in peanut. Available field resistance to orthotospoviruses in peanut is not complete, and cultivars can suffer substantial yield loss under high thrips and virus pressure. Integrating thrips resistance with available virus resistance would be ideal to limit losses. A discussion of modern technologies such as transgenic resistance, marker assisted selection and RNA interference, and future directions that could be undertaken to integrate resistance to thrips and to orthotospoviruses in peanut cultivars is included in this article

    Genetic Mapping of QTLs Controlling Fatty Acids Provided Insights into the Genetic Control of Fatty Acid Synthesis Pathway in Peanut (Arachis hypogaea L.)

    Get PDF
    Peanut, a high-oil crop with about 50% oil content, is either crushed for oil or used as edible products. Fatty acid composition determines the oil quality which has high relevance to consumer health, flavor, and shelf life of commercial products. In addition to the major fatty acids, oleic acid (C18:1) and linoleic acid (C18:2) accounting for about 80% of peanut oil, the six other fatty acids namely palmitic acid (C16:0), stearic acid (C18:0), arachidic acid (C20:0), gadoleic acid (C20:1), behenic acid (C22:0), and lignoceric acid (C24:0) are accounted for the rest 20%. To determine the genetic basis and to improve further understanding on effect of FAD2 genes on these fatty acids, two recombinant inbred line (RIL) populations namely S-population (high oleic line ā€˜SunOleic 97Rā€™ Ɨ low oleic line ā€˜NC94022ā€™) and T-population (normal oleic line ā€˜Tifrunnerā€™ Ɨ low oleic line ā€˜GT-C20ā€™) were developed. Genetic maps with 206 and 378 marker loci for the S- and the T-population, respectively were used for quantitative trait locus (QTL) analysis. As a result, a total of 164 main-effect (M-QTLs) and 27 epistatic (E-QTLs) QTLs associated with the minor fatty acids were identified with 0.16% to 40.56% phenotypic variation explained (PVE). Thirty four major QTLs (>10% of PVE) mapped on five linkage groups and 28 clusters containing more than three QTLs were also identified. These results suggest that the major QTLs with large additive effects would play an important role in controlling composition of these minor fatty acids in addition to the oleic and linoleic acids in peanut oil. The interrelationship among these fatty acids should be considered while breeding for improved peanut genotypes with good oil quality and desired fatty acid composition

    A recombination bin-map identified a major QTL for resistance to Tomato Spotted Wilt Virus in peanut (Arachis hypogaea)

    Get PDF
    Tomato spotted wilt virus (TSWV) is a devastating disease to peanut growers in the South-eastern region of the United States. Newly released peanut cultivars in recent years are crucial as they have some levels of resistance to TSWV. One mapping population of recombinant inbred line (RIL) used in this study was derived from peanut lines of SunOleic 97R and NC94022. A whole genome re-sequencing approach was used to sequence these two parents and 140 RILs. A recombination bin-based genetic map was constructed, with 5,816 bins and 20 linkage groups covering a total length of 2004 cM. Using this map, we identified three QTLs which were colocalized on chromosome A01. One QTL had the largest effect of 36.51% to the phenotypic variation and encompassed 89.5 Kb genomic region. This genome region had a cluster of genes, which code for chitinases, strictosidine synthase-like, and NBS-LRR proteins. SNPs linked to this QTL were used to develop Kompetitive allele specific PCR (KASP) markers, and the validated KASP markers showed expected segregation of alleles coming from resistant and susceptible parents within the population. Therefore, this bin-map and QTL associated with TSWV resistance made it possible for functional gene mapping, map-based cloning, and marker-assisted breeding. This study identified the highest number of SNP makers and demonstrated recombination bin-based map for QTL identification in peanut. The chitinase gene clusters and NBS-LRR disease resistance genes in this region suggest the possible involvement in peanut resistance to TSWV

    Downregulation of TFPI in breast cancer cells induces tyrosine phosphorylation signaling and increases metastatic growth by stimulating cell motility

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Increased hemostatic activity is common in many cancer types and often causes additional complications and even death. Circumstantial evidence suggests that tissue factor pathway inhibitor-1 (TFPI) plays a role in cancer development. We recently reported that downregulation of TFPI inhibited apoptosis in a breast cancer cell line. In this study, we investigated the effects of TFPI on self-sustained growth and motility of these cells, and of another invasive breast cancer cell type (MDA-MB-231).</p> <p>Methods</p> <p>Stable cell lines with TFPI (both Ī± and Ī²) and only TFPIĪ² downregulated were created using RNA interference technology. We investigated the ability of the transduced cells to grow, when seeded at low densities, and to form colonies, along with metastatic characteristics such as adhesion, migration and invasion.</p> <p>Results</p> <p>Downregulation of TFPI was associated with increased self-sustained cell growth. An increase in cell attachment and spreading was observed to collagen type I, together with elevated levels of integrin Ī±2. Downregulation of TFPI also stimulated migration and invasion of cells, and elevated MMP activity was involved in the increased invasion observed. Surprisingly, equivalent results were observed when TFPIĪ² was downregulated, revealing a novel function of this isoform in cancer metastasis.</p> <p>Conclusions</p> <p>Our results suggest an anti-metastatic effect of TFPI and may provide a novel therapeutic approach in cancer.</p
    • ā€¦
    corecore