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Summary
Multiparental genetic mapping populations such as nested-association mapping (NAM) have

great potential for investigating quantitative traits and associated genomic regions leading to

rapid discovery of candidate genes and markers. To demonstrate the utility and power of this

approach, two NAM populations, NAM_Tifrunner and NAM_Florida-07, were used for dissecting

genetic control of 100-pod weight (PW) and 100-seed weight (SW) in peanut. Two high-density

SNP-based genetic maps were constructed with 3341 loci and 2668 loci for NAM_Tifrunner and

NAM_Florida-07, respectively. The quantitative trait locus (QTL) analysis identified 12 and 8

major effect QTLs for PW and SW, respectively, in NAM_Tifrunner, and 13 and 11 major effect

QTLs for PW and SW, respectively, in NAM_Florida-07. Most of the QTLs associated with PW and

SW were mapped on the chromosomes A05, A06, B05 and B06. A genomewide association

study (GWAS) analysis identified 19 and 28 highly significant SNP–trait associations (STAs) in
NAM_Tifrunner and 11 and 17 STAs in NAM_Florida-07 for PW and SW, respectively. These

significant STAs were co-localized, suggesting that PW and SW are co-regulated by several

candidate genes identified on chromosomes A05, A06, B05, and B06. This study demonstrates

the utility of NAM population for genetic dissection of complex traits and performing high-

resolution trait mapping in peanut.

Introduction

Peanut (Arachis hypogaea L.) is a cash crop with high market

and nutritional values. The major focus of breeding is to

increase the yield, which is directly proportional to the number

of pods per plant, pod weight and seed weight (Gomes and

Lopez, 2005). Preferences related to traits such as oil contents,

oleic acid contents, relatively large seed size and testa colour

drive demand from industries and consumers ensuring higher

prices in national and international markets (Gangurde et al.,

2019; Venuprasad et al., 2011). Earlier reports on correlation

between seed mass, oil and protein contents showed linear

increases in oil and protein contents with increased seed mass

(Dwivedi et al., 1990). Significant variation is available in the

cultivated gene pool for seed weight, and several conventional

breeding programs are also targeting for large-seeded peanut

(Venuprasad et al., 2011). Some earlier reports on the

inheritance of pod and seed size in peanut showed that large

pod and seed size were dominant to small pod and seed

(Balaiah et al., 1977; Layrisse et al., 1980), while other studies

reported small pods to be dominant over large pods (Gibori

et al., 1978). Seed size also had been reported to be controlled

by a single gene (Balaiah et al., 1977), three genes (Pat-

tanashetti et al., 2008) or five genes (Martin, 1967). Others

suggested quantitative inheritance of seed weight with additive

gene action (Garet, 1976), epistatic effects (Upadhyaya et al.,

1992) or maternal inheritance (Hariprasanna et al., 2008).

Quantitative trait locus (QTL) mapping studies have been

used in peanut for genetic dissection of complex traits, mainly

based on biparental populations (Guo et al., 2016; Kumar et al.,

2019; Pandey et al., 2017a, 2017b; Wang et al., 2017),

including peanut pod size and weight (Chavarro et al., 2019;

Hake et al., 2017; Luo et al., 2017). Multiparental mapping

populations or next-generation mapping populations, such as
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NAM (nested-association mapping) and MAGIC (Multi-parent

Advanced Generation Inter-Cross), have already shown their

potential in maize (Yu et al., 2008), wheat (Mackay et al.,

2014) and soybean (Xavier et al., 2015). Multiparent popula-

tions have advantages over biparental populations as they

produce additional recombination breakpoints and increase the

allelic diversity and power of QTL detection (Yu et al., 2008).

Availability of a high-density genotyping platform with uni-

formly distributed genomewide genetic markers is critical for

high-resolution genetic dissection of complex traits and tracking

the favourable alleles in a breeding population (Pandey et al.,

2012; Pandey et al., 2016; Varshney et al., 2013). Reference

genome sequences of both wild diploid progenitors A. ipaensis

and A. duranensis (Bertioli et al., 2016; Chen et al., 2016; Lu

et al., 2018), as well as allotetraploid cultivated peanut

A. hypogaea (Bertioli et al., 2019; Chen et al., 2019; Zhuang

et al., 2019), have recently been assembled by the international

peanut community and are important resources for sequence-

based trait mapping and candidate gene discovery. This has also

facilitated the development of high-resolution SNP arrays in

peanut (Clevenger et al., 2017; Pandey et al., 2017b), which

have shown great utility in fine trait mapping in other crops

such as rice (Thomson et al., 2017), soybean (Xavier et al.,

2018), maize (Yan et al., 2010), wheat (Wang et al., 2014),

chickpea (Roorkiwal et al., 2018) and pigeonpea (Saxena et al.,

2018; Yadav et al., 2019).

Several years ago, U.S. peanut research community developed

two NAM mapping populations with two common parents

(Tifrunner and Florida-07) and eight diverse, unique parents,

resulting in 16 biparental recombinant inbred line (RIL) families in

order to maximize genetic diversity while meeting practical

breeding objectives (Holbrook et al., 2013). The primary objective

of this developed genetic resource was to share these popula-

tions with the peanut research community and to undertake

high-resolution phenotyping of these populations (Chu et al.,

2018; Holbrook et al., 2013). The parents represent a wide range

of agronomic, morphological and disease resistance traits, and

some biparental populations have been studied for resistance to

early and late leaf spot diseases (Chu et al., 2019; Clevenger

et al., 2018). These two NAM populations thus could combine

the strengths of both linkage and association mapping since the

NAM populations have higher power QTL detection as compared

with biparental mapping populations (Guo et al., 2016; Wang

et al., 2017; Yu et al., 2008). Most importantly, this combination

of power and resolution could resolve associations down to the

gene level in identified genomic regions. Using a subset of Set A

of this collection (Holbrook et al., 2013) which was only available

at that time, we assembled two NAM populations with a 2 9 4

design, NAM_Tiftunner (581 lines) and NAM_Florida-07 (496

lines), to demonstrate both utility and power of the NAM

approach for trait dissection of 100-pod weight (PW) and 100

seed weight (SW) in peanut. These populations were genotyped

using the Axiom_Arachis 58K SNP array (Clevenger et al., 2017;

Pandey et al., 2017b) and phenotyped for 2 years of 2015 and

2016, followed by QTL linkage mapping and genomewide

association study (GWAS). This report demonstrates the utility

and power of the NAM approach in peanut by producing a high-

density genetic map and identifying QTLs and SNP–trait associ-
ations (STAs) with greater significance than those observed in

biparental populations (Chavarro et al., 2019; Hake et al., 2017;

Luo et al., 2017) in pod and seed weights. These identified

markers and candidate genes shed light on potential mechanisms

controlling pod and seed development in peanut and may serve

as useful markers in molecular breeding programs.

Results

Phenotypic variation for pod weight and seed weight in
NAM populations

Significant variation was recorded for 100 pod weight (PW) and

100 seed weight (SW), and the mid-parental values for PW and

SW were close to the population mean. Violin plots showed

normal distribution for PW and SW for both populations

(Figure 1). Transgressive segregants were observed for PW and

SW among the RILs, indicating multigenic inheritance of the

traits. There were significant positive correlations between pod

weight and seed weight in all two years environments. Little

variation was observed between the seasons for PW and SW

(Figure 1a, 1B; Tables S1 and S2; Figure S1).

High-density genetic maps for NAM populations

A total of 3874 polymorphic SNPs were used in genetic map

construction in NAM-T. A genetic map was constructed with a

total of 3311 polymorphic SNPs spanning 20 linkage groups

(Figure 2a). This genetic map achieved a distance of 2,585.9 cM

with a map density of 0.77 cM/locus. A total of 1663 and 1678

SNP loci were mapped to the A- and B- subgenomes, covering

1249 cM and 1336 cM, respectively. The A- and B- subgenomes

achieved a map density of 0.75 and 0.79 cM/locus. The number

of mapped loci ranged from 109 on A01 to 238 on B02, while the

length of the LGs ranged from 90 cM for A01 to 225 cM for A04.

B04 was the densest linkage group with 224 SNP loci mapped

achieving a map density of 2.3 loci/cM.

Figure 1 Violin plots represent the variation available in phenotypic data

for pod weight and seed weight in nested-association mapping (NAM)

populations. (a) NAM_Tifrunner and (b) NAM_Florida-07 during season

2015 and 2016.
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Similarly, a total of 2860 poly-high-resolution SNPs were used

for construction of a dense genetic map for NAM-F. A dense

genetic map was constructed with 2668 SNPs with a map

distance of 2393.4 cM and marker density of 1.1 SNP/cM

(Figure 2b). There were 192 SNPs not considered for linkage

analysis because of segregation distortion or lack of linkage. A

total of 1 326 SNP loci were mapped in the A subgenome

spanning 1 197.1 cM, whereas 1 342 SNP loci were mapped in

the B subgenome spanning 1 196.3 cM distance. The marker

density in both subgenomes was 1.1 loci/cM. The lowest num-

bers of SNPs were mapped on A04 (93 SNP loci) with the lowest

marker density of 0.64 SNP loci/cM. The highest numbers of SNPs

(184 SNP loci) were mapped on A06 with a marker density 1.57

SNP loci/cM. A02 had 177 SNPs mapped but had the highest

marker density of 2.19 SNPs/cM. Mapping statistics for both NAM

populations can be found in (Table S3).

Highly collinear genetic and physical map

Both genetic maps showed good collinearity with the reference

genome sequences of progenitors, A. duranensis and A. ipaensis.

Syntenic regions between the genetic maps (cM) and physical

maps (Mb) could be clearly observed on circos plots (Figure 2c,d).

QTLs for pod weight (PW) and seed weight (SW) in
NAM-T and NAM-F populations

This study revealed several genomic regions using Joint Inclusive

Composite Interval Mapping (JICIM) for PW and SW in both NAM

populations (Table 1). A total of 19 QTLs for PW and SW were

identified in NAM-T, whereas 23 QTLs for PW and SW were

identified in NAM-F. The majority of the genomic regions with

major effects were identified on chromosomes A05 and B05.

In theNAM-T, for the trait of PW, therewere eightQTLs identified

with LOD scores of 3.6 to 12.1 and PVE% of 10.6 to 34.3. The QTL

qPW_B05 identified on chromosomeB05explained the highest PVE

of 34.3% with LOD 8.0 for PW. There were two QTLs on

chromosome A05 for PW, qPW_A05-1 and qPW_A05-2,with over

30% PVE, which also had significant impact on SW (qSW_A05-1

andqSW_A05-2),with over 20%PVE (Table 1; Figure 3b). Similarly,

for the trait of SW, therewere 11QTLs identifiedwith LOD scores of

3.1 to10.8 and11.8 to30.6PVE%.TheQTLqSW_A05-1whichwas

identified as amajorQTL for SW (5.7 LODand30.6 PVE%) seems to

share same genomic regions where another QTL (qPW_A05-2) was

identified for PW (9.8 LOD and 33.3 PVE %). A major QTL for SW

was identified on chromosome B09 with 4.5 LOD and 19.2% PVE.

One QTL on chromosome A08 was identified for SW with major

effect on SW (25.3% PVE). Two QTLs were identified on chromo-

some B07 showing significant influence on SW. There were

genomic regions mostly associated with PW and SW on chromo-

some A05, B05, A06 and B06 (Table 1; Figure 3b).

In the NAM-F, 12 QTLs were identified for PW with LOD scores

of 3.3 to 5.3 and PVE from 13.0% to 32.3%, including three

QTLs on chromosome A05 and four on B05 (Table 1). The highest

PVE was recorded for the QTL qPW_B06-2 mapped on chromo-

some B06 at 74.0 cM with LOD 5.3 and 32.3% PVE. Chromo-

somes A09 and B09 also showed QTLs controlling PW with 16%

PVE for each QTL. Similarly, there were 11 QTLs identified for SW

with LOD scores of 3.4 to 9.0 and 17.9 to 40.3 PVE%. The QTL

qSW_A05-3 for SW with the highest PVE was identified on

Figure 2 Summary of genetic maps. (a) NAM_Tifrunner, (b) NAM_Florida-07 with mapped loci, map distance (cM) and map density (loci/cM), (c)

collinearity of genetic map with reference genomes (A and B subgenomes) using NAM_Tifrunner population. (d) Collinearity of genetic maps with reference

genomes (A and B subgenome) constructed using NAM_Florida-07 population. The prefix G stands for genetic map on left-hand side whereas, prefix P

stands for corresponding physical map on right-hand side.
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chromosome A05 at 139.0 cM with 7.7 LOD value and 40.3%

PVE (Table 1). Similarly, in the B subgenome, a QTL qSW_B05-3

was identified on B05 at 22.0 cM for SW with 9 LOD and 39.7

PVE%. Interestingly, five genomic regions were identified as

common regions for both PW and SW on chromosomes A05, B05

and B06 (Figure 3a).

GWAS for pod weight (PW) and seed weight (SW) in
NAM-T and NAM-F populations

GWAS results on the NAM-T population identified 24 potential

STAs strongly associated with PW and SW (Table 2). A total of 18

STAs were associated with SW with P value range of 17.5–5.1. All

Table 1 QTLs identified for pod and seed weights in nested-association mapping (NAM) populations, NAM_Tifrunner (NAM-T) and NAM_Florida-

07 (NAM-F)

QTL name Chr Year Position (cM) Left flanking marker Right flanking marker Marker interval (cM) LOD PVE (%)

QTLs identified in NAM-T

100 Pod weight

qPW_A05-1 A05 2015, 2016 62 Affx-152071156 Affx-152081918 3.4 9.4 32.6

qPW_A05-2 A05 2015, 2016 18.1 Affx-152072578 Affx-152034828 1.2 9.8 33.3

qPW_A05-3 A05 2015, 2016 25.3 Affx-152034514 Affx-152068537 2.1 12.1 30.4

qPW_A06 A06 2015 62.1 Affx-152028854 Affx-152042541 0.7 4.1 10.6

qPW_B05 B05 2015, 2016 53.2 Affx-152030151 Affx-152052489 0.6 8 34.3

qPW_B06-1 B06 2015 86.2 Affx-152074118 Affx-152039395 5 3.8 22.1

qPW_B06-2 B06 2015 56.3 Affx-152063867 Affx-152068866 6.2 6.1 16

qPW_B07 B07 2016 23.2 Affx-152075138 Affx-152061032 0.8 3.6 16.3

100 Seed weight

qSW_A05-1 A05 2015, 2016 18.2 Affx-152072578 Affx-152034828 1.2 5.7 30.6

qSW_A05-2 A05 2015, 2016 62.6 Affx-152071156 Affx-152081918 3.4 5.3 20.1

qSW_A06-1 A06 2016 65.5 Affx-152028938 Affx-152030506 0.8 3.7 18.2

qSW_A06-2 A06 2015 55.4 Affx-152050526 Affx-152049487 1.4 3.1 11.8

qSW_A08 A08 2016 92.5 Affx-152034595 Affx-152050655 2.9 3.4 25.3

qSW_B05 B05 2015, 2016 53.1 Affx-152030151 Affx-152052489 0.6 4.3 26.1

qSW_B06-1 B06 2016 55.8 Affx-152026905 Affx-152044809 2.5 5.1 24.4

qSW_B06-2 B06 2015 86.7 Affx-152074118 Affx-152040518 1.7 3.8 22.1

qSW_B07-1 B07 2015 43.6 Affx-152070761 Affx-152061732 0.9 8.7 25.3

qSW_B07-2 B07 2016 147.2 Affx-152034806 Affx-152027501 9.4 10.8 19.8

qSW_B09 B09 2015, 2016 61.3 Affx-152030882 Affx-152074441 2.8 4.5 19.2

QTLs identified in NAM-F

100 Pod weight

qPW_A05-3 A05 2015, 2016 5.2 Affx-152077044 Affx-152051452 4.8 4.9 26.1

qPW_A05-2 A05 2015, 2016 140.1 Affx-152026889 Affx-152055218 14 4.3 21.8

qPW_A05-1 A05 2015, 2016 16.4 Affx-152083713 Affx-152066050 7.5 3.9 27.4

qPW_A06-1 A06 2015 32.5 Affx-152031222 Affx-152041766 1.5 4 13

qPW_A09-1 A09 2016 105.6 Affx-152070384 Affx-152079906 2.7 5.3 16.3

qPW_B05-1 B05 2015, 2016 88.3 Affx-152038129 Affx-152069488 0.9 3.3 27

qPW_B05-2 B05 2015, 2016 57.7 Affx-152078919 Affx-152079844 1.8 3.4 31

qPW_B05-3 B05 2015, 2016 56.8 Affx-152031298 Affx-152078919 1 3.3 19.4

qPW_B05-4 B05 2015, 2016 22.8 Affx-152076736 Affx-152028895 0.7 4.3 22

qPW_B06-2 B06 2016 74.5 Affx-152080402 Affx-152041157 0.8 5.3 32.3

qPW_B06-1 B06 2015 16.6 Affx-152043214 Affx-152073378 1.4 4.2 14.6

qPW_B09-1 B09 2015, 2016 112.4 Affx-152065486 Affx-152081633 1.6 3.8 16.7

100 seed weight

qSW_A05-1 A05 2015, 2016 11.2 Affx-152083713 Affx-152066050 7.5 4.2 28

qSW_A05-3 A05 2015, 2016 139.3 Affx-152026889 Affx-152055218 14 7.7 40.3

qSW_A05-2 A05 2015, 2016 2.2 Affx-152061849 Affx-152044122 2.3 3.4 17.9

qSW_A06-1 A06 2015 82.3 Affx-152083869 Affx-152039817 0.4 4.7 30.7

qSW_A07-1 A07 2016 78.3 Affx-152042213 Affx-152081932 1.4 5.8 34

qSW_B05-1 B05 2015, 2016 109.4 Affx-152041353 Affx-152079400 0.8 3.4 21.2

qSW_B05-2 B05 2015, 2016 57.7 Affx-152078919 Affx-152079844 1.8 4.6 35

qSW_B05-3 B05 2015, 2016 22.8 Affx-152076736 Affx-152028895 0.7 9 40

qSW_B06-1 B06 2015 74.6 Affx-152080402 Affx-152041157 0.8 4 34.3

qSW_B06-2 B06 2016 50.2 Affx-152028010 Affx-152051179 0.4 3.6 35.7

qSW_B06-3 B06 2015 81.3 Affx-152048400 Affx-152027597 1.5 7 36.2

LOD, Logarithm of odds; PVE, phenotypic variance explained.
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highly associated STAs for SW were identified on chromosomes

A05 and B05. Some SNPs were also identified on chromosome

A06 and B06 showing minor influence on SW. Additionally, six

STAs were identified on A05 and A06 chromosomes with

potential candidate genes having reported roles in seed and

pod development corresponding to STAs. The SNP on A05 at

Affx-152034807 showed strong association with both PW and

SW in all consecutive seasons. Interestingly, all the STAs on

chromosomes A05 and A06 were found consistently associated

with both SW and PW in both years 2015 and 2016 with very

high P values. Similarly, for PW, 20 highly significant STAs were

identified with P value range of 17.5–5.3. Almost, all the SNPs

identified were associated with both SW and PW on four

chromosomes (A05, A06, B05 and B06). Surprisingly, five STAs

were identified as unique STAs for just PW on chromosome B07.

In the NAM-T GWAS analysis, 15 SNPs on chromosomes A05,

A06, B05 and B06 showed strong and equal association with PW

and SW (Table 2; Figure 4; Table S4).

In the association panel of NAM-F, the GWAS results showed a

total of 14 STAs significantly associated with PW and SW

(Table 3). A total of 10 STAs were found associated with PW

located on chromosomes A05, A06, A07, B06, B07 and B09 with

p values ranging from 5.4 to 8.7. The SNP Affx-152042939 was

found highly associated with PW with p value of 8.0 and SW with

p value of 12.5. A total of 12 STAs were detected for SW.

Interestingly, there were eight STAs identified as common STAs

for both SW and PW on chromosomes A05, A06, A07, B06 and

B07 (Table 3; Figure 4; Figure S2; Table S5).

In the association panel of the NAM-T, PW- and SW-related

genes were identified such as protein kinase superfamily protein,

sphingolipid transporter, myb transcription factor, acyl-CoA

synthetase, plastid-lipid-associated protein PAP, pentatricopep-

tide repeat (PPR), sucrose synthase (Table 2). The identified genes

are known for crucial role in seed and pod development. In the

association panel, NAM-F (Table 3), nodulin MtN21 (Ara-

du.G6GR7), transporters of the amino acid and auxins, showed

association with the SNP loci mapped on chromosome A05. This

SNP has been potentially associated with PW and SW across the

seasons consistently. Spermidine synthase (Aradu.PTC1G) has

been reported for its role in embryonic development which was

equally associated with PW and SW consistently. E2F transcription

factor (Winged helix-turn-helix DNA-binding domain) (Ara-

du.VSE1D) corresponded to the QTL on chromosome A05

identified for PW and SW. Mannose-1-phosphate guanylyltrans-

ferase (Aradu.GEE52) relates to the QTL on chromosome A05 has

been recorded in two seasons for SW. Acetylglucosaminyl

transferase enzyme which is essential for the processing of

high-mannose to hybrid and complex N-glycans (Araip.SZ4VC)

which corresponds to SNP on chromosome B05. Helicases

(Araip.25DGX) showed significant association with both SW

and PW, which shares the QTL location on chromosome B09. The

rho GDP dissociation inhibitor is responsible for root architecture

which corresponds to the QTL on chromosome A07. The

transmembrane emp24 domain involves in protein trafficking,

which relates to the QTL on chromosome B07. Aminoacyl-tRNA

ligases near SNP on chromosome A09 identified for SW.

Figure 3 Genomic regions (QTLs) identified for pod weight (PW) and seed weight (SW) in linkage analysis. (a) QTLs identified for pod weight and seed

weight using NAM_Tifrunner population. (b) QTLs identified for pod weight and seed weight using NAM_Florida-07 population. Red triangles for SW and

green triangles for PW.
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Table 2 SNP–trait associations (STAs) and genes corresponding to STAs identified in the NAM_Tifrunner population

SNP

Position in diploid

genomes
STA in QTL

region Trait Year P val Gene ID

Position of genes in tetraploid

genome (AABB)

FunctionChr Position Chr Start End

Affx-152078443 A05 61633387 qPW_A05-1 SW 2016 9.2 Aradu.398CK Ahy05 69058788 69056547 Leucine-rich

repeats

Affx-152026623 A05 93303050 qPW_A05-2 SW, PW 2015, 2016 10.3 Aradu.V498C Ahy05 99487216 99488936 Nucleoside

triphosphatases

Affx-152044207 A05 93522747 qPW_A05-2 SW, PW 2015, 2016 13.4 Aradu.L6QML Ahy05 99718318 99718870 myb transcription

factor

Affx-152034807 A05 95201614 qPW_A05-2 SW, PW 2015, 2016 17.5 Aradu.H6YZR Ahy05 101322384 101321914 Protein kinase

superfamily

protein

Affx-152037557 A05 95646799 qPW_A05-2 SW, PW 2015, 2016 17.1 Aradu.5R3CV Ahy05 101804803 101804290 Unknown protein

Affx-152068240 A05 95688122 qPW_A05-2 SW, PW 2015, 2016 17.4 Aradu.4D2H2 Ahy05 37914722 37914949 Sphingolipid

transporter

Affx-152060972 A05 97867243 qPW_A05-3 SW, PW 2015, 2016 9.2 Aradu.217QF Ahy05 104262628 104264458 Pentatricopeptide

repeats (PPR)

Affx-152029724 A06 101049365 qPW_A06 SW, PW 2015, 2016 5.4 Aradu.0Y2ZI Ahy06 106073906 106074903 Concanavalin

A-like lectin/

glucanase

Affx-152072200 A06 101055956 qPW_A06 SW, PW 2015, 2016 6.4 Aradu.Z1KSU Ahy06 106081510 106081280 Unknown protein

Affx-152042916 A06 101212919 qPW_A06 SW, PW 2015, 2016 10.4 Aradu.X5WFU Ahy06 106322915 106323963 Transcription

factor jumonji

Affx-152034258 A06 101214044 qPW_A06 SW, PW 2015, 2016 9.9 Aradu.X5WFU Ahy06 106322915 106323963 Transcription

factor jumonji

Affx-152044720 A06 101300979 qPW_A06 SW, PW 2015, 2016 7.7 Aradu.5LG80 Ahy06 106389203 106388512 Plastid-lipid-

associated

protein (PAP)

Affx-152041119 A06 101302040 - SW, PW 2015, 2016 9.3 Aradu.FL7G4 Ahy07 5968474 5968026 Plastid-lipid-

associated

protein (PAP)

Affx-152058135 A09 71878357 - SW 2016 7.4 Aradu.20W1Q Ahy09 72158341 72158836 Basic leucine

zipper

Affx-152072236 B05 17051675 qPW_B05 SW, PW 2015, 2016 12.2 Araip.22PIW Ahy15 17648595 17650297 Acyl-CoA

synthetase

Affx-152073838 B05 93426656 qPW_B05 SW, PW 2015, 2016 13.9 Araip.N2NX2 Ahy15 99201207 99201565 GDP-fucose

protein O

fucosyltransferase

Affx-152075875 B06 125101917 qPW_B06-2 PW 2015 5.3 Araip.YL4Q6 Ahy16 138952178 138951677 Uncharacterized

protein

Affx-152035548 B06 125236516 qPW_B06-2 SW, PW 2015, 2016 9.3 Araip.DII6F Ahy16 139079635 139080408 Transcription

factor jumonji

Affx-152033888 B07 119939393 qPW_B07-2 SW 2016 5.1 Araip.Z2RR8 Ahy17 128309992 128309051 Protein kinase

family protein

Affx-152067055 B07 1931980 qPW_B07-1 PW 2016 5.6 Araip.H8C7N Ahy17 2860547 2863439 C2H2-like zinc

finger protein

Affx-152054860 B07 1941111 qPW_B07-1 PW 2016 5.8 Araip.G1WAG Ahy17 2870129 2869673 Heat-shock

protein binding

Affx-152028948 B07 1944622 qPW_B07-1 PW 2016 5.4 Araip.05GH3 Ahy17 2877877 2878795 Mitochondrial

transcription

termination

Affx-152043830 B07 1945325 qPW_B07-1 PW 2016 5.7 Araip.R0K9W Ahy17 2877794 2876876 CCCH-type zinc

finger protein

Affx-152069626 B07 648238 - PW 2016 6.8 Araip.Y2DTS Ahy17 1514508 1513921 Polygalacturonase
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Overlapping genomic regions in linkage and association
analysis

In both NAM populations, co-localized STAs in QTL regions were

identified for PW and SW. In NAM-T population (Table 2;

Figure 5), single STA (Affx-152078443) was identified in QTL

region qPW_A05-1. Five STAs (Affx-152026623, Affx-

152044207, Affx-152034807, Affx-152037557, and Affx-

152068240) with P-value range of 10.3–17.5 were identified

for PW and SW located in QTL region qPW_A05-2 on chromo-

some A05. These STAs are detected in both years due to point

mutations such as A›G and A›C. One STA (Affx-152060972) was

detected in QTL region qPW_A05-3 on chromosome A05. Five

STAs (Affx-152029724, Affx-152072200, Affx-152042916, Affx-

152034258 and Affx-152044720) were detected in QTL region

qPW_A06. These STAs also were detected in both years for PW

and SW and could be caused by the point mutations at A›G and

T›G. Two STAs (Affx-152072236, Affx-152073838) were identi-

fied in QTL region qPW_B05 on chromosome B05, while four

STAs were detected in QTL region qPW_B07-1 on chromosome

B07 (Table 2). In NAM-F population (Table 3; Figure 5), four STAs

(Affx-152042939, Affx-152030262, Affx-152073472 and Affx-

152041326) were detected in QTL region qPW_A05-2, which all

the STAs were associated with PW and SW in both years and

could be linked to the point mutation at A›C, T›C and A›G. Two

STAs (Affx-152074153 and Affx-152065804) were identified in

QTL region qSW_A07-1. One STA was identified in QTL region

qSW_B06-1 on chromosome B06. Two STAs were identified in

QTL region qPW_B09-1 chromosome B09. Majority of the STAs

are possible linked to the A›G transition. These common genomic

regions provide more confidence for further gene discovery and

fine mapping studies for PW and SW.

Discussion

Next-generation mapping populations (such as NAM, MAGIC)

allow intensive genome reshuffling making them suitable for

high-resolution mapping due to broad genetic diversity created

through high numbers of recombination events. Emerging next-

generation sequencing technologies (NGS) also have accelerated

genomic-assisted breeding by making the discovery of genetic

variation more affordable. Peanut is an allotetraploid legume with

large genome size (~2.7 Gb) and narrow genetic diversity, which

is the bottleneck for dense genetic mapping. SNP arrays and

whole-genome resequencing (WGRS) are the advanced NGS

technologies producing maximum data points for high-density

genetic mapping. Both peanut progenitor genome sequences,

A. duranensis (A genome) and A. ipaensis (B genome) (Bertioli

et al., 2016; Chen et al., 2016; Lu et al., 2018), are available with

annotations. Recently, assemblies of reference genome have also

become available for cultivated peanut (Bertioli et al., 2019; Chen

et al., 2019; Zhuang et al., 2019) and will increase the efficiency

Figure 4 SNP–Trait Associations (STAs) for pod weight (PW) and seed weight (SW) identified using genomewide association study in NAM_Tifrunner and

NAM_Florida-07 populations. Manhattan plots represent the associations for PW and SW. For the NAM-T, four plots are for PW and SW in two seasons for

the years 2015 and 2016. Indicated as NAM_Tifrunner_PW_2015, NAM_Tifrunner_PW_2016, NAM_Tifrunner_SW_2015, NAM_Tifrunner_SW_2016.

Similarly, for the NAM-F, four plots were constructed for PW and SW for two season data during the year 2015 and 2016. Indicated as

NAM_Florida_PW_2015, NAM_Florida_PW_2016, NAM-Florida_SW_2015 and NAM_Florida_SW_2016. The SNPs on chromosomes A05, A06, B06 and

B07 highlighted with red colour indicate consistently high association with PW and SW across the seasons.
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of such studies in the future. In this study, we have used two

NAM populations of set A (Chu et al., 2018; Holbrook et al.,

2013) and a highly informative ‘Axiom_Arachis’ SNP array which

was based on two peanut progenitor genome sequences

(Chavarro et al., 2019; Clevenger et al., 2017; Pandey et al.,

2017b) for genotyping both NAM populations.

SNP array-based high-density genetic maps for
multiparent populations

This report demonstrated the advantages of phenotypic analysis

of nested-association mapping (NAM) populations in peanut,

combined with genomewide SNP genotyping over the earlier

developed SSR-based genetic maps that were sparse and,

therefore, resulted in low genome coverage with possible

absence of relevant recombination breakpoints. The fewer

recombination events and narrow genetic diversity in biparental

RIL populations may result in poor QTL detection power

(Gangurde et al., 2019). In this study, we were reporting two

dense genetic maps of 3,341 loci for NAM-T and 2,668 loci for

NAM-F population. The map distance for NAM-T and NAM-F was

2586.0 cM and 2393.7 cM, respectively, which are very close to

the physical map distance of 2538 Mb (excluding scaffolds) of

tetraploid peanut genome (Bertioli et al., 2019). Earlier

constructed genetic maps for individual RIL populations were

not very dense due to less allelic diversity and few recombination

events. Recently, a genetic map of 585 loci using genotyping-by-

sequencing (GBS) was used for mapping stem rot resistance in

peanut (Dodia et al., 2019). A SSR-based genetic map was

developed for mapping aflatoxin resistance with 1219 loci (1175

SSR markers and 42 transposon markers) in 2037.75 cM (Yu

et al., 2019). Most of the studies reported the genetic maps

between a range of 600–1500 loci in biparental populations,

except a WGRS based genetic map with 8869 loci in 3120 cM

(Agarwal et al., 2018). In other crops, similar studies using NAM

populations successfully dissected the genetics of complex traits

and facilitated candidate gene discovery, such as in soybean

(Song et al., 2017; Xavier et al., 2018), maize (McMullen et al.,

2009; Yu et al., 2008), wheat (Hu et al., 2018; Jordan et al.,

2018) and rice (Fragoso et al., 2017). In most of these studies, the

GWAS analysis was performed in NAM populations instead of

constructing genetic maps. In this study, we constructed a

consensus genetic map based on the genotypic data generated

from the four families of each NAM population. The genetic map

information successfully facilitated QTL discovery in these NAM

populations, which provided an opportunity for comparing results

with GWAS analysis for SW and PW in peanut.

Table 3 SNP–trait associations (STAs) and genes corresponding to STAs identified in the NAM_Florida-07 population

SNP

Position in diploid

genome
STA in QTL

region Trait Year P-val Gene ID

Position of genes in tetraploid

genome

Gene featuresChr Position Chr Start End

Affx-152042939 A05 100238896 qPW_A05-2 SW, PW 2015,

2016

8 Aradu.G6GR7 Ahy05 106199976 106200416 Nodulin MtN21

Affx-152030262 A05 101618480 qPW_A05-2 SW, PW 2015,

2016

6.6 Aradu.PTC1G Ahy05 107409300 107409642 Spermidine synthase

Affx-152073472 A05 101953436 qPW_A05-2 SW, PW 2015,

2016

6.5 Aradu.GEE52 Ahy05 107743343 107743653 Mannose-1-

phosphate

guanylyltransferase

Affx-152041326 A05 101972210 qPW_A05-2 SW, PW 2015,

2016

6.1 Aradu.VSE1D Ahy05 107758493 107758020 E2F transcription

factor

Affx-152051216 A06 105402882 qPW_B06-2 PW 2016 5.4 Aradu.U4S3Y Ahy06 108174915 108174330 ATP-binding ABC

transporter

Affx-152074153 A07 1191903 qSW_A07-1 SW, PW 2015,

2016

6.2 Aradu.DN3DB Ahy07 429296 430399 STERILE APETALA

Affx-152065804 A07 1473208 qSW_A07-1 SW 2015 5.3 Aradu.HR82P Ahy07 702139 701523 ALG-2 interacting

protein

Affx-152040866 A07 88041 - SW, PW 2015,

2016

5.9 Aradu.P9PXC Ahy17 1437155 1436877 Rho GDP dissociation

inhibitor

Affx-152032205 A09 13985238 qPW_A09-1 SW 2016 10.4 Aradu.VVP26 Ahy09 14192792 14193209 Aminoacyl-tRNA

ligases

Affx-152077418 A09 967133 - SW 2016 5.4 Aradu.N0F41 Ahy09 746523 745565 XH/XS domain-

containing protein

Affx-152043067 B06 129731047 qSW_B06-1 SW, PW 2015 5.4 Araip.CA56R Ahy16 146391458 146392020 unknown protein

Affx-152052942 B07 454008 - SW, PW 2015,

2016

8.7 Araip.6B9LC Ahy17 482067 481316 Transmembrane

emp24 domain-

containing protein

p24beta2-like

Affx-152028084 B09 16205446 qPW_B09-1 SW 2016 7.1 Araip.25DGX Ahy19 16462456 16462950 Helicase-like protein

Affx-152036034 B09 57421497 qPW_B09-1 PW 2016 6.1 Araip.M90GE Ahy19 58395165 58394788 Cytidine/deoxycytidylate

deaminase
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Linkage and association analyses uncover candidate
genomic regions and genes controlling pod and seed
weights

In peanut, the genetic dissection of important traits has been

carried out using QTL mapping of segregating RIL populations

derived from biparental crosses (Agarwal et al., 2018; Chavarro

et al., 2019; Lu et al., 2018; Luo et al., 2018; Pandey et al., 2016).

The NAM design has been successful in several crops to exploit

the benefits of both joint linkage analysis and association

mapping simultaneously in rapeseed and maize (Hu et al.,

2018; McMullen et al., 2009) to dissect the genetic basis of

complex quantitative traits. In this study, NAM design was used

for identification of genomic regions by genetic mapping on two

NAM populations, and we performed GWAS by keeping into

account the genetic effects produced by each family. The

associated SNPs within QTL regions could track the potential

genes associated with PW and SW. The traits of PW and SW are

the polygenic traits controlled by several genes (Han et al., 2012;

Liu et al., 2015). Joint inclusive composite interval linkage

mapping identified QTL with major effects for flowering time-

related traits in a maize NAM population (Li et al., 2016) and

inflorescence size (Wu et al., 2016). In this study, genomic regions

were discovered as co-located genome regions on chromosomes

A05 and B05 controlling both PW and SW. Earlier studies using

low-dense SSR-based genetic maps reported 14 QTLs with ~17%
PVE for PW and SW under drought stress (Ravi et al., 2011;

Varshney et al., 2009) leading to identification of small effect

QTLs. A genetic mapping study of a RIL population reported three

significant QTLs located in a region of 2.7 Mb at the end of

chromosome A05 for SW (Luo et al., 2017). In GWAS analysis,

five marker–trait associations (MTAs) identified for seed weight

using SSRs and DArT loci (Pandey et al., 2014). Recently, a major

QTL identified on chromosome A05 for seed number per pod

using a biparental cross (Chen et al., 2019). QTL meta-analysis

using consensus map narrowed down the QTL region to 0.7 cM

on chromosome A05 (Lu et al., 2018). In this study, seven and

four STAs identified in NAM-T and NAM-F, respectively, co-

located in QTL regions of PW and SW in both seasons on

chromosomes A05. Chu et al. (2019) identified a QTL on B05

overlaps for pod yield and LLS resistance. Interestingly, in this

study we also reported QTLs for both PW and SW in both NAM

populations on B05. STA (Affx-152030262) corresponds to

spermidine synthase (spds) on A05 controlling seed size in cereals

as reported in rice (Tao et al., 2018). Luo et al. (2018) reported

SNPs associated with high shelling percentage on chromosome

A09 and B02 in peanut. However, this study identified a STA

(Affx-152032205) with a high p-value (10.0) which was located

on chromosome A09 in the vicinity of SNP identified for shelling

percentage.

Candidate genes identified regulating seed and pod
weight

In this study, the flanking sequences of the genes were

surrounded by significantly associated STAs, which are called as

potential candidate genes. Among these genes, we focused only

those which are having relevance to the traits of PW and SW from

their functional annotations available (http://www.peanutbase.

org). Direct orthologues of a gene with related function in other

species were also taken into consideration.

Few genes identified in this study were reported earlier for their

direct role in regulation of SW and PW in other species. The STA

Figure 5 Circos plot represents summary of

genomic regions identified in genomewide

association study and genetic mapping for pod

weight and seed weight in NAM_Tifrunner and

NAM_Florida-07 populations. (a) peanut

pseudomolecules from A subgenome are depicted

as A01 to A10 and that of B subgenome depicted

as B01 to B10; (b) QTLs identified for pod weight

and seed weight in NAM_Florida-07; (c) STAs

identified for seed weight in NAM_Florida-07; (d)

STAs identified for pod weight in NAM_Florida-

07; (e) QTLs identified for pod weight and seed

weight in NAM_Tifrunner population; (f) STAs

identified for seed weight in NAM_Tifrunner; (g)

STAs identified for pod weight in NAM_Tifrunner.

STAs overlapping in QTL regions were identified

on chromosome A05, A06, B05, B06 and B09.
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(Affx-152030262) on chromosome A05 corresponding to the

spermidine and spermine, which were reported as low molecular

organic cations and found in organisms from bacteria to plants

and animals (Alc�azar et al., 2006). Orthologues of spermidine

synthase (spds) have been reported to play a role in embryonic

development (Yoshihisa et al., 2004). Editing of spermidine

synthase using RNAi resulted in malformation of the embryos

which affects seed weight in rice (Imai et al., 2004). Spds has

been reported for its role in regulation of seed size, yield and seed

germination (Tao et al., 2018). An E2F factor corresponding to

STA (Affx-152041326) was identified on chromosome A05 which

is reported for its major role in cell growth and proliferation as

well as in development of the seed coat (Tim et al., 2009).

Mannose-1-phosphate guanylyltransferase that was flanked by

the STA (Affx-152041326) plays a vital role in plant development

and cell-wall architecture as it mediates N-linked glycosylation for

cellulose biosynthesis (Wolfgang et al., 2001). Cellulose is

important component of peanut seed coat and pod shells (Wan

et al., 2016); hence, the mannose-1-phosphate guanylyltrans-

ferase might be involved in the regulation of PW and seed coat of

seed. Nodulin was identified on chromosome (A05) flanked by

STA (Affx-152042939) reported to be expressed in root nodules

and seed as well as pods (Clevenger et al., 2016). Nodulins have

an important role in transporting nutrient, solutes and hormones

throughout plant growth and development (Denance et al.,

2014). During pod filling, nodulins might be playing a major role

for solute transport which may be affecting seed weight and pod

weight.

As PW and SW are very complex traits, STAs with small effects

were also identified which may involve as activators or enhancers

in regulation of important genes (Table 2). Aradu.H6YZR (protein

kinase) was reported to be involved in the various biochemical

pathways such as nutrient signalling, protein phosphorylation.

Two kinases SNRK2.2 and SNRK2.3 regulate abscisic acid (ABA)

levels which affects seed germination, dormancy and seedling

growth in Arabidopsis (Fujii et al., 2007). Aradu.4D2H2 (sphin-

golipid) the proteins play a role in the endosome/lysosome

storage, signal transduction across the plasma membrane, plasma

membrane stability and the structural components of cell wall

(Chao et al., 2011). However, sphingolipids are not very closely

associated with the pod or seed development. Aradu.L6QML

(transcription factor MYB62) plays an important role in various

cellular processes such as resistance against biotic, abiotic stresses

and developmental processes (Ambawat et al., 2013). MYB89

(R2R3-MYB transcription factor) highly expresses in developing

seed during maturation which acts as a repressor for oil

accumulation in seeds. The knockout of MYB89 factor resulted

into high oil accumulation in myb89-1 mutants in Arabidopsis (Li

et al., 2017). Araip.22PIW (acyl-CoA synthetase) serving as the

carbon source for fatty acid biosynthesis in Arabidopsis which

triggers oil accumulation in seed therefore might be associated

with seed mass (Lin and Oliver, 2008). Transcription factor

jumonji is a class of proteins in Arabidopsis reported to be

involved in the regulation of flowering with other transcriptional

factor (Noh et al., 2004). Knockdown of a jumonji JMJ524 in

tomato resulted into shrunken leaves and shortened internodes,

but increased levels of gibberellic acid (GA3) reported in mutants

(Li et al., 2015). Plastid-lipid-associated protein (PAP) (Ara-

du.FL7G4) involved in the sequestration of hydrophobic com-

pounds such as lipids into seed endosperm. PAPs interact with

MYB transcription factors during ABA metabolism which medi-

ates signal transduction in response to biotic and abiotic stresses

(Leitner-Dagan et al., 2006). Pentatricopeptide repeats (Ara-

du.217QF) play role in cellular organelles interactions, organelles

biogenesis, photosynthesis and respiration (Barkan and Small,

2014). Sucrose synthase (Aradu.PD37S) plays role in starch and

sucrose metabolism, crucial in determining the source and sink

loading during transportation of photosynthesis products into

seed and pod (Baroja-Fernandez et al., 2012). Acetylglucosaminyl

transferase enzyme has been reported for vitamin C biosynthesis

in the plant cell wall (Strasser et al., 2005). Helicases reported for

their role in DNA repair and nucleotide metabolisms in plants

(Raikwar et al., 2015).

Two subgenomes share responsibility for pod and seed
development in peanut

As the B subgenome (A. ipaensis) of cultivated peanut is highly

similar to the A subgenome of (A. duranensis) (Bertioli et al.,

2016), most of the genes have two copies representing their

respective genomes. This has resulted in the association of

phenotypic data with genomic regions (homologues) from both

subgenomes. In support of this, we identified genomic regions on

A05/B05, A06/B06, A07/B07 and A09/B09 for SW; also, SNPs for

PW were identified on A06/B06 and A07/B07. Interestingly, as

the PW and SW are dependent and associated traits, we

identified similar candidate genes on chromosomes A06, B06,

A07 and B07. The information generated from this study would

further help in selecting favourable haplotypes from both the

subgenomes to achieve desirable seed and pod features in

peanut.

Conclusion

Until now, only biparental and natural germplasm collections

were deployed in peanut for conducting trait mapping and

association studies for important traits. This study used a NAM

approach using peanut research community developed resource

to perform high-resolution mapping and gene discovery for two

important yield-related traits, that is, seed weight and pod

weight. This study also applied the high-density 58K SNP

genotyping assay, Axiom_Arachis, which further improved the

resolution of trait mapping. Being complex traits, the genetic and

GWAS analyses identified potential genomic regions and candi-

date genes over eight chromosomes (A05, A06, A08, A09, B05,

B06, B08 and B09) for seed weight and pod weight. Candidate

genes were identified such as spermidine synthase (spds),

nodulins, pentatricopeptide repeats, E2F and acyl-CoA syn-

thetases, which may play a significant role in the regulation of

pod and seed development and warrant further investigation. The

QTLs and STAs identified in this study also serve as a source for

potential selectable markers for assistance in molecular breeding

selection for new cultivars with desired seed and pod weight for

improved yield and the development of lines with seed size

specifications meeting the needs of oil, food and confectionary

manufacturers.

Material and methods

Plant material and phenotyping

Two NAM populations namely ‘NAM_Tifrunner’ (NAM-T) and

‘NAM_Florida-07’ (NAM-F) were defined by using a subset of the

Set A (which was only available at that time) RIL populations

developed by peanut research community (Chu et al., 2018;

Holbrook et al., 2013), two runner cultivars (Tifrunner and
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Florida-07) as common parents and four unique parents of

N08082olJCT, C76-16, NC 3033 and GP-NC WS16 (SPT 06-06)

(Tallury et al., 2014). NAM-T had 581 RILs and NAM-F had 496

RILs. NAM-T has subsets of 161, 162, 132 and 125 RILs and NAM-

F has subsets of 120, 105, 92 and 179 RILs. The subsets of RILs

from both NAMs and six parental lines were planted at the USDA-

ARS Belflower Farm, Tifton, GA, for two years (2015 and 2016)

for phenotyping of 100-pod weight (PW) and 100-seed weight

(SW). The NAM lines were planted in two-row plots (1.5 m long

with 90-cm row space), separated by an alley of 3 m at a seeding

rate of six seeds per 0.3 m. Standard agronomical practices for

peanut cultivation in Georgia were followed, and no fungicide

was applied during the growing seasons. After harvest and drying

to less than 10% water content, 100 pods and 100 seeds were

picked randomly and weighed for PW and SW traits. Each plot

was sampled three times as replications.

DNA extraction and genotyping with ‘Axiom_Arachis’
array

DNA samples from all the NAM lines used in this study were

extracted from young leaves using Thermo Scientific GeneJET

Plant Genomic DNA Purification Mini Kit. The DNA samples were

checked for quality on 0.8% agarose gels and quantified on a

Nanodrop 8000 Spectrophotometer (Thermo Scientific, Pitts-

burgh, PA). Affymetrix GeneTitan platform was used to genotype

both NAM populations with the 58K SNP ‘Axiom_Arachis’ array

(Clevenger et al., 2017; Pandey et al., 2017b). Initially, the target

probes for 581 samples for NAM-T and 496 samples for NAM-F

were prepared using a minimum of 20 lL DNA with a concen-

tration 10 ng/lL. The samples were then amplified, fragmented

and hybridized on the array chip followed by single-base

extension through DNA ligation and signal amplification accord-

ing to the procedure explained in the Affymetrix Axiom� 2.0

Assay Manual (axiom_2_assay_auto_workflow_user_guide.pdf).

The GeneTitan Multi-Channel Instrument (Affymetrix, Santa

Clara, CA, USA) was then used for staining and scanning the

samples to derive the genotypic information for each line. The

genotypic data for each line were generated and stored in the

form of.CEL file format.

SNP allele calling and quality analysis

The SNP allele calling and data analyses were performed

following the process mentioned in Pandey et al. (2017b).

Initially, the AxiomTM Analysis Suite version 1.0 was used for

allele calling by importing.CEL files. Subsequently, we used ‘Best

Practices’ workflow to perform quality control (QC) analysis of

samples to select only those samples which passed the QC test for

further analysis. The ‘Sample QC’ workflow was then used to

produce genotype calls for the samples which passed QC analysis

using ‘Best Practices Workflow’. The ‘Genotyping’ workflow was

used to perform genotyping on the imported.CEL files regardless

of the sample QC matrix. Before making the genotyping calls,

samples not passing the QC were removed as their inclusion may

reduce the quality of the analysed results. Finally, the ‘Summary

Only’ workflow was used to produce a summary containing

details on the intensities for the probe sets for use in copy number

analysis tools. It also allows exporting the SNP data after the

analysis are completed for downstream analysis. The above

criteria helped in removing the SNPs having low-quality SNPs and

keeping only the poly-high-resolution SNPs for the further

analysis. The genotyping data from a total of 58 233 SNPs for

both NAM populations were retrieved from Axiom analysis suit.

The SNP IDs with their corresponding affymetrix IDs and other

necessary details are attached in (Table S6). Polymorphic SNPs

segregating within each RIL or segregating in at least two RILs

were used for genetic map construction. All polymorphic SNPs

regardless of segregation distortion with minor allele frequency

(MAF = 0.25) and missing threshold (misThr = 0.8) were consid-

ered for GWAS. In NAM-T, 3876 polymorphic SNPs were used for

linkage analysis, while a total of 11 520 polymorphic SNPs were

used in the GWAS analysis. In NAM-F, 2860 polymorphic SNPs

were used for linkage analysis, while 7672 polymorphic SNPs

were used in the GWAS analysis using the R package NAM

(Xavier et al., 2015) (Figure S3). Adjacent markers which are

100% identical and carrying similar genotypic values were

removed using the parameter perfect symmetry (psy = 1, for

100% symmetry) (Figure S4).

Construction of dense genetic maps

After filtering the complete genotypic data for the poly-high-

resolution SNPs, individual SNPs were recoded as ‘B’ representing

homozygous for the founder parents (C76-16, N08082, NC

3033, SPT06-06) and ‘A’ representing homozygous for common

parents (Tifrunner and Florida-07), ‘H’ representing heterozygous

and ‘-’ representing missing alleles. The genotyping data were

first tested for segregation distortion for each SNP marker by a

chi-square test. The genetic map was constructed using JoinMap

(v4.0) with LOD score 5.0 and a minimum recombination

threshold of 50%. Identical SNP loci and lines were removed

using the function ‘exclude identical’. The Kosambi map function

was used for genetic map construction and to convert the

recombination frequencies into map distances in centiMorgans

(cM) (Kosambi, 1944). No attempt has been made to map the

distorted SNP loci in the final genetic map. The final chromo-

some-wise marker positions with their respective names then

used to draw the final genetic map using MapChart (Voorrips,

2002).

Collinearity of genetic maps of NAM-T and NAM-F

Each linkage group in the genetic maps of NAM-T and NAM-F

was numbered and oriented according to its homologous physical

map of diploid candidate genomes A. ipaensis and A. duranensis

(Bertioli et al., 2016). Synteny and collinearity between the maps

were visually assessed in circus plot (Krzywinski et al., 2009) by

using the position of mapped loci on respective genetic maps

(cM) and physical map (bp).

Joint inclusive composite interval mapping

The genetic map and the phenotypic data were used for QTL

analysis. A joint QTL mapping approach across the four families of

each NAM-T and NAM-F populations was done using the joint

inclusive composite interval mapping (JICIM) method imple-

mented in IciMapping 4.1. The JICIM approach is effective and

specially designed for joint QTL analysis of NAM populations

(Buckler et al., 2009; Li et al., 2011). The genotypic data of both

NAMs were recoded, where 0 represents homozygous for

founder parent, 2 represents homozygous for common parent,

1 represents heterozygous, and �1 represents missing. QTL

analysis was performed using a stepwise regression probability of

0.001. The LOD threshold was calculated by 1000 permutations

at the P = 0.05 level. QTL effects were estimated as the

phenotypic variance explained (PVE) and additive effects by the

QTL. Scanning for QTLs was done at an interval of 5 cM, and a

QTL was declared significant if the threshold was greater than the
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1000 permutation of the trait data by resampling method

(Churchill and Doerge, 1994). In JICIM, the additive effect from

each family with their respective LOD scores and phenotypic

variance were recorded for each QTL.

Genomewide association study and candidate gene
discovery

Genomewide association analyses were performed using the

multiparental model, namely mixed linear model (MLM) (Wei and

Xu, 2016), implemented in R package for NAM population (Xavier

et al., 2015) which followed Equation (1),

y ¼ Xb þ Za þ wþ e; (1)

where y is the vector of phenotypes, Xb is the design matrix and

coefficients of fixed effects, here corresponding to the intercept,

Z is the incidence matrix of the marker data, a is the vector of

regression coefficients associated with marker effects within

family, w corresponds to the polygenic coefficients, and e is the

vector of residuals. The model assumes that a ~ N (0, Ir2
a), w~N

(0, Kr2
w) and e~N (0, Ir2

e ), where K regards kinship among lines

framed by the genomic relationship matrix. Statistical significance

of single markers was evaluated through the likelihood-ratio test

by comparing the log-likelihood of the model that includes the

marker effect (L1) with the log-likelihood of the model that does

not (L0). The association threshold to define significantly associ-

ated marker with the trait was computed with Bonferroni

correction for multiple testing to mitigate false positives. Bonfer-

roni is the most standard procedure, and it is super conservative.

Bonferroni threshold (a = 0.05) yielding a threshold of approx-

imately �log10 (0.05/3876) = 4.88 for NAM-T and �log10 (0.05/

2860) = 4.76 for NAM-F. But, here we used an extra conservative

threshold of 5 –log (P-value) for both NAM populations.

The SNPs with significant associations were exploited for

candidate gene discovery by using the annotation of diploid

genomes, A. duranensis and A. ipaensis (https://peanutbase.org;

Bertioli et al., 2016). The SNP subsiding start and end position of a

gene was explored for candidate gene on the basis of their

biological function annotation related to the trait of interest.

There are possibilities of getting multiple SNPs on a gene segment

which can be referred as haplotypes.
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Figure S1 Frequency distribution plots representing the magni-

tude of phenotypic variation for pod weight (PW) and seed

weight (SW) in NAM_Tifrunner and NAM_Florida-07.

Figure S2 QQ plots against genotypic and phenotypic data

represent the normal distribution for genotypic and phenotypic

data.

Figure S3 Criteria used for filtering the SNPs on the basis of

polymorphism and distortion for genetic mapping and genome-

wide association studies in NAM_Florida-07 and NAM_Tifrunner

population.
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Figure S4 SNP density plots representing chromosomes wise

distribution of SNPs used for genome-wide association studies in

(A) NAM_Tifrunner and (B) NAM_Florida-07 populations.
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