181 research outputs found

    MicroRNA Controlled Adenovirus Mediates Anti-Cancer Efficacy without Affecting Endogenous MicroRNA Activity

    Get PDF
    MicroRNAs are small non-coding RNA molecules that regulate mRNA translation and stability by binding to complementary sequences usually within the 3′ un-translated region (UTR). We have previously shown that the hepatic toxicity caused by wild-type Adenovirus 5 (Ad5WT) in mice can be prevented by incorporating 4 binding sites for the liver-specific microRNA, mir122, into the 3′ UTR of E1A mRNA. This virus, termed Ad5mir122, is a promising virotherapy candidate and causes no obvious liver pathology. Herein we show that Ad5mir122 maintains wild-type lytic activity in cancer cells not expressing mir122 and assess any effects of possible mir122 depletion in host cells. Repeat administration of 2×1010 viral particles of Admir122 to HepG2 tumour bearing mice showed significant anti-cancer efficacy. RT-QPCR showed that E1A mRNA was down-regulated 29-fold in liver when compared to Ad5WT. Western blot for E1A confirmed that all protein variants were knocked down. RT-QPCR for mature mir122 in infected livers showed that quantity of mir122 remained unaffected. Genome wide mRNA microarray profiling of infected livers showed that although the transcript level of >3900 different mRNAs changed more than 2-fold following Ad5WT infection, less than 600 were changed by Ad5mir122. These were then filtered to select mRNAs that were only altered by Ad5mir122 and the remaining 21 mRNAs were compared to predicted mir122 targets. No mir122 target mRNAs were affected by Ad5 mir122. These results demonstrate that the exploitation of microRNA regulation to control virus replication does not necessarily affect the level of the microRNA or the endogenous mRNA targets

    Tamoxifen mechanically deactivates hepatic stellate cells via the G protein-coupled estrogen receptor

    Get PDF
    Tamoxifen has been used for many years to target estrogen receptor signalling in breast cancer cells. Tamoxifen is also an agonist of the G protein-coupled estrogen receptor (GPER), a GPCR ubiquitously expressed in tissues that mediates the acute response to estrogens. Here we report that tamoxifen promotes mechanical quiescence in hepatic stellate cells (HSCs), stromal fibroblast-like cells whose activation triggers and perpetuates liver fibrosis in hepatocellular carcinomas. This mechanical deactivation is mediated by the GPER/RhoA/myosin axis and induces YAP deactivation. We report that tamoxifen decreases the levels of hypoxia-inducible factor-1 alpha (HIF-1α) and the synthesis of extracellular matrix proteins through a mechanical mechanism that involves actomyosin-dependent contractility and mechanosensing of tissue stiffness. Our results implicate GPER-mediated estrogen signalling in the mechanosensory-driven activation of HSCs and put forward estrogenic signalling as an option for mechanical reprogramming of myofibroblast-like cells in the tumour microenvironment. Tamoxifen, with half a century of safe clinical use, might lead this strategy of drug repositioning.Peer reviewe

    Snail1 induces epithelial-to-mesenchymal transition and tumor initiating stem cell characteristics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tumor initiating stem-like cells (TISCs) are a subset of neoplastic cells that possess distinct survival mechanisms and self-renewal characteristics crucial for tumor maintenance and propagation. The induction of epithelial-mesenchymal-transition (EMT) by TGFβ has been recently linked to the acquisition of TISC characteristics in breast cancer. In HCC, a TISC and EMT phenotype correlates with a worse prognosis. In this work, our aim is to elucidate the underlying mechanism by which cells acquire tumor initiating characteristics after EMT.</p> <p>Methods</p> <p>Gene and protein expression assays and Nanog-promoter luciferase reporter were utilized in epithelial and mesenchymal phenotype liver cancer cell lines. EMT was analyzed with migration/invasion assays. TISC characteristics were analyzed with tumor-sphere self-renewal and chemotherapy resistance assays. <it>In vivo </it>tumor assay was performed to investigate the role of Snail1 in tumor initiation.</p> <p>Conclusion</p> <p>TGFβ induced EMT in epithelial cells through the up-regulation of Snail1 in Smad-dependent signaling. Mesenchymal liver cancer post-EMT demonstrates TISC characteristics such as tumor-sphere formation but are not resistant to cytotoxic therapy. The inhibition of <it>Snail1 </it>in mesenchymal cells results in decreased <it>Nanog </it>promoter luciferase activity and loss of self-renewal characteristics <it>in vitro</it>. These changes confirm the direct role of Snail1 in some TISC traits. <it>In vivo</it>, the down-regulation of <it>Snail1 </it>reduced tumor growth but was not sufficient to eliminate tumor initiation. In summary, TGFβ induces EMT and TISC characteristics through Snail1 and Nanog up-regulation. In mesenchymal cells post-EMT, Snail1 directly regulates <it>Nanog </it>expression, and loss of Snail1 regulates tumor growth without affecting tumor initiation.</p

    Cholangiocarcinoma 2020: the next horizon in mechanisms and management

    Get PDF
    [EN] Cholangiocarcinoma (CCA) includes a cluster of highly heterogeneous biliary malignant tumours that can arise at any point of the biliary tree. Their incidence is increasing globally, currently accounting for ~15% of all primary liver cancers and ~3% of gastrointestinal malignancies. The silent presentation of these tumours combined with their highly aggressive nature and refractoriness to chemotherapy contribute to their alarming mortality, representing ~2% of all cancer-related deaths worldwide yearly. The current diagnosis of CCA by non- invasive approaches is not accurate enough, and histological confirmation is necessary. Furthermore, the high heterogeneity of CCAs at the genomic, epigenetic and molecular levels severely compromises the efficacy of the available therapies. In the past decade, increasing efforts have been made to understand the complexity of these tumours and to develop new diagnostic tools and therapies that might help to improve patient outcomes. In this expert Consensus Statement, which is endorsed by the European Network for the Study of Cholangiocarcinoma, we aim to summarize and critically discuss the latest advances in CCA, mostly focusing on classification, cells of origin, genetic and epigenetic abnormalities, molecular alterations, biomarker discovery and treatments. Furthermore, the horizon of CCA for the next decade from 2020 onwards is highlightedJ.M.B. received EASL Registry Awards 2016 and 2019 (European CCA Registry, ENS-CCA). J.M.B. and M.J.P. were supported by: the Spanish Ministry of Economy and Competitiveness (J.M.B.: FIS PI12/00380, FIS PI15/01132, FIS PI18/01075 and Miguel Servet Programme CON14/00129; M.J.P.: FIS PI14/00399, FIS PI17/00022 and Ramon y Cajal Programme RYC-2015-17755, co-financed by “Fondo Europeo de Desarrollo Regional” (FEDER)); ISCIII CIBERehd; “Diputación Foral de Gipuzkoa” (J.M.B: DFG15/010, DFG16/004), and BIOEF (Basque Foundation for Innovation and Health Research: EiTB Maratoia BIO15/CA/016/BD); the Department of Health of the Basque Country (M.J.P.: 2015111100; J.M.B.: 2017111010), and “Fundación Científica de la Asociación Española Contra el Cancer” (AECC Scientific Foundation) (J.M.B.). J.M.B. and J.W.V. were supported by the European Commission Horizon 2020 programme (ESCALON project 825510). The laboratory of J.B.A. is supported by competitive grants from the Danish Medical Research Council, the Danish Cancer Society, and the Novo Nordisk and A.P. Møller Foundations. J.J.G.M. and R.I.R.M. were supported by the Carlos III Institute of Health, Spain (PI16/00598 and PI18/00428) and were co-financed by the European Regional Development Fund. J.M.B. and J.J.G.M. were supported by the Ministry of Science and Innovation, Spain (SAF2016-75197-R), and the “Asociación Española Contra el Cancer”, Spain (AECC-2017). R.I.R.M. was supported by the “Centro Internacional sobre el Envejecimiento”, Spain (OLD-HEPAMARKER, 0348-CIE-6-E). A.L. received funding from the Christie Charity. M.M. was supported by the Università Politecnica delle Marche, Ancona, Italy (040020_R.SCIENT.A_2018_MARZIONI_M_STRATEGICO_2017). M.S. was supported by the Yale Liver Center Clinical and Translational Core and the Cellular and Molecular Core (DK034989 Silvio O. Conte Digestive Diseases Research Center). C.C. is supported by grants from INSERM, Université de Rennes, INCa, and ITMO Cancer AVIESAN dans le cadre du Plan Cancer (Non-coding RNA in Cancerology: Fundamental to Translational), Ligue Contre le Cancer and Région Bretagne. J.Bruix was supported by grants from Instituto de Salud Carlos III (PI18/00763), AECC (PI044031) and WCR (AICR) 16-0026. A.F. was supported by grants from ISCIII (PI13/01229 and PI18/00542). CIBERehd is funded by the Instituto de Salud Carlos III. V.C., D.M., J. Bridgewater and P.I. are members of the European Reference Network - Hepatological Diseases (ERN RARE-LIVER). J.M.B. is a collaborator of the ERN RARE-LIVER

    HNF1α inhibition triggers epithelial-mesenchymal transition in human liver cancer cell lines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hepatocyte Nuclear Factor 1α (HNF1α) is an atypical homeodomain-containing transcription factor that transactivates liver-specific genes including albumin, α-1-antitrypsin and α- and β-fibrinogen. Biallelic inactivating mutations of <it>HNF1A </it>have been frequently identified in hepatocellular adenomas (HCA), rare benign liver tumors usually developed in women under oral contraceptives, and in rare cases of hepatocellular carcinomas developed in non-cirrhotic liver. HNF1α-mutated HCA (H-HCA) are characterized by a marked steatosis and show activation of glycolysis, lipogenesis, translational machinery and mTOR pathway. We studied the consequences of HNF1α silencing in hepatic cell lines, HepG2 and Hep3B and we reproduced most of the deregulations identified in H-HCA.</p> <p>Methods</p> <p>We transfected hepatoma cell lines HepG2 and Hep3B with siRNA targeting HNF1α and obtained a strong inhibition of HNF1α expression. We then looked at the phenotypic changes by microscopy and studied changes in gene expression using qRT-PCR and Western Blot.</p> <p>Results</p> <p>Hepatocytes transfected with HNF1α siRNA underwent severe phenotypic changes with loss of cell-cell contacts and development of migration structures. In HNF1α-inhibited cells, hepatocyte and epithelial markers were diminished and mesenchymal markers were over-expressed. This epithelial-mesenchymal transition (EMT) was related to the up regulation of several EMT transcription factors, in particular <it>SNAIL </it>and <it>SLUG</it>. We also found an overexpression of TGFβ1, an EMT initiator, in both cells transfected with HNF1α siRNA and H-HCA. Moreover, TGFβ1 expression is strongly correlated to HNF1α expression in cell models, suggesting regulation of TGFβ1 expression by HNF1α.</p> <p>Conclusion</p> <p>Our results suggest that HNF1α is not only important for hepatocyte differentiation, but has also a role in the maintenance of epithelial phenotype in hepatocytes.</p

    IGF-I induced genes in stromal fibroblasts predict the clinical outcome of breast and lung cancer patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Insulin-like growth factor-1 (IGF-I) signalling is important for cancer initiation and progression. Given the emerging evidence for the role of the stroma in these processes, we aimed to characterize the effects of IGF-I on cancer cells and stromal cells separately.</p> <p>Methods</p> <p>We used an <it>ex vivo </it>culture model and measured gene expression changes after IGF-I stimulation with cDNA microarrays. <it>In vitro </it>data were correlated with <it>in vivo </it>findings by comparing the results with published expression datasets on human cancer biopsies.</p> <p>Results</p> <p>Upon stimulation with IGF-I, breast cancer cells and stromal fibroblasts show some common and other distinct response patterns. Among the up-regulated genes in the stromal fibroblasts we observed a significant enrichment in proliferation associated genes. The expression of the IGF-I induced genes was coherent and it provided a basis for the segregation of the patients into two groups. Patients with tumours with highly expressed IGF-I induced genes had a significantly lower survival rate than patients whose tumours showed lower levels of IGF-I induced gene expression (<it>P </it>= 0.029 - Norway/Stanford and <it>P </it>= 7.96e-09 - NKI dataset). Furthermore, based on an IGF-I induced gene expression signature derived from primary lung fibroblasts, a separation of prognostically different lung cancers was possible (<it>P </it>= 0.007 - Bhattacharjee and <it>P </it>= 0.008 - Garber dataset).</p> <p>Conclusion</p> <p>Expression patterns of genes induced by IGF-I in primary breast and lung fibroblasts accurately predict outcomes in breast and lung cancer patients. Furthermore, these IGF-I induced gene signatures derived from stromal fibroblasts might be promising predictors for the response to IGF-I targeted therapies.</p> <p>See the related commentary by Werner and Bruchim: <url>http://www.biomedcentral.com/1741-7015/8/2</url></p
    corecore