756 research outputs found

    Daily ensemble river discharge reforecasts and real-time forecasts from the operational Global Flood Awareness System

    Get PDF
    Operational global-scale hydrological forecasting systems are used to help manage hydrological extremes such as floods and droughts. The vast amounts of raw data that underpin forecast systems and the ability to generate information on forecast skill have, until now, not been publicly available. As part of the Global Flood Awareness System (GloFAS; https://www.globalfloods.eu/, last access: 3 December 2022) service evolution, in this paper daily ensemble river discharge reforecasts and real-time forecast datasets are made free and openly available through the Copernicus Climate Change Service (C3S) Climate Data Store (CDS). They include real-time forecast data starting on 1 January 2020 updated operationally every day and a 20-year set of reforecasts and associated metadata. This paper describes the model components and configuration used to generate the real-time river discharge forecasts and the reforecasts. An evaluation of ensemble forecast skill using the continuous ranked probability skill score (CRPSS) was also undertaken for river points around the globe. Results show that GloFAS is skilful in over 93 % of catchments in the short (1 to 3 d) and medium range (5 to 15 d) against a persistence benchmark forecast and skilful in over 80 % of catchments out to the extended range (16 to 30 d) against a climatological benchmark forecast. However, the strength of skill varies considerably by location with GloFAS found to have no or negative skill at longer lead times in broad hydroclimatic regions in tropical Africa, western coast of South America, and catchments dominated by snow and ice in high northern latitudes. Forecast skill is summarised as a new headline skill score available as a new layer on the GloFAS forecast Web Map Viewer to aid user interpretation and understanding of forecast quality.</p

    Bis(pentalene)dititanium chemistry: C–H, C–X and H–H bond activation

    Get PDF
    The reaction of the bis(pentalene)dititanium complex Ti2(μ:η5,η5-Pn†)2 (Pn† = C8H4(1,4-SiiPr3)2) (1) with the N-heterocyclic carbene 1,3,4,5-tetramethylimidazol-2-ylidene results in intramolecular C–H acti- vation of an isopropyl substituent to form a tucked-in hydride (3). Whilst pyridine will also effect this cyclometallation reaction to form (5), the pyridine analogue of (3), the bases 1,2,4,5-tetramethyl-imid- azole, 2,6-lutidine, DABCO or trimethylphosphine are ineffective. The reaction of (1) with 2,6-dichloro- pyridine affords crystallographically characterised (6) which is the product of oxidative addition of one of the C–Cl bonds in 2,6-dichloro-pyridine across the Ti–Ti double bond in (1). The tucked-in hydride (3) reacts with hydrogen to afford a dihydride complex (4) in which the tuck-in process has been reversed; detailed experimental and computational studies on this reaction using D2, HD or H2/D2 support a mechanism for the formation of (4) which does not involve σ-bond metathesis of H2 with the tucked-in C–H bond in (3). The reaction of (3) with tBuCCH yields the corresponding acetylide hydrido complex (7), where deuteration studies show that again the reaction does not proceed via σ-bond metathesis. Finally, treatment of (3) with HCl affords the chloro-derivative (9) [(NHC)Ti(μ-H)Ti{(μ,η5:η5)Pn†}2Cl], whereas pro- tonation with [NEt3H]BPh4 yielded a cationic hydride (10) featuring an agostic interaction between a Ti centre and an iPr Me group

    C-H and H-H activation at a Di-titanium centre

    Get PDF
    The reaction of the bis(pentalene)dititanium complex Ti2(μ:η5,η5-Pn†)2 (Pn† = C8H4(1,4-SiiPr3)2) with the N-heterocyclic carbene 1,3,4,5 tetramethylimidazol 2 ylidene results in intramolecular C-H activation of one of the iPr methyl groups of a Pn† ligand and formation of a "tucked-in" bridging hydride complex. The "tuck-in" process is reversed by the addition of hydrogen, which yields a dihydride featuring terminal and bridging hydrides

    Proposal for a new meteotsunami intensity index

    Get PDF
    Atmospherically generated coastal waves labelled as meteotsunami are known to cause destruction, injury, and fatality due to their rapid onset and unexpected nature. Unlike other coastal hazards such as tsunami, there exist no standardised means of quantifying this phenomenon, which is crucial to understand shoreline impacts and to enable researchers to establish a shared language and framework for meteotsunami analysis and comparison. In this study, we present a new five-level Lewis Meteotsunami Intensity Index (LMTI) trialled in the United Kingdom (UK) but designed for global applicability. A comprehensive dataset of meteotsunami events recorded in the UK was utilised, and the index's effectiveness was evaluated, with intensity level and spatial distribution of meteotsunami occurrence derived. Results revealed a predominant occurrence of Level 2 moderate intensity meteotsunami (69 %) in the UK, with distinct hotspots identified in south-western England and Scotland. Further trial implementation of the LMTI in a global capacity revealed its potential adaptability to other meteotsunami-prone regions, facilitating the comparison of events and promoting standardisation of assessment methodologies.</p

    Meteotsunami in the United Kingdom: the hidden hazard

    Get PDF
    This paper examines the occurrence and seasonality of meteotsunami in the United Kingdom (UK) to present a revised and updated catalogue of events that have occurred since 1750. Previous case studies have alluded to a summer prevalence and rarity of this hazard in the UK. We have verified and classified 98 events using a developed set of identification criteria. The results have revealed a prominent seasonal pattern of winter events which are related to mid-latitude depressions with precipitating convective weather systems. A geographical pattern has also emerged, highlighting three “hotspot” areas at the highest risk from meteotsunami. The evidence reviewed and new data presented here show that the hazard posed by meteotsunami has been underestimated in the UK.</p
    corecore