120 research outputs found

    Probing the in-plane electron spin polarization in Ge/Si0.15 Ge0.85 multiple quantum wells

    Get PDF
    We investigate spin transport in a set of Ge/Si0.15Ge0.85 multiple quantum wells (MQWs) as a function of the well thickness. We exploit optical orientation to photogenerate spin-polarized electrons in the discrete energy levels of the well conduction band at the Γ point of the Brillouin zone. After diffusion, we detect the optically oriented spins by means of the inverse spin-Hall effect (ISHE) taking place in a thin Pt layer grown on top of the heterostructure. The employed spin injection/detection scheme is sensitive to in-plane spin-polarized electrons, therefore, by detecting the ISHE signal as a function of the photon energy, we evaluate the spin polarization generated by optical transitions driven by the component of the light wave vector in the plane of the wells. In this way, we also gain insight into the electron spin-diffusion length in the MQWs. The sensitivity of the technique to in-plane spin-related properties is a powerful tool for the investigation of the in-plane component of the spin polarization in MQWs, which is otherwise commonly inaccessible

    Photoluminescence Study of Low Thermal Budget III–V Nanostructures on Silicon by Droplet Epitaxy

    Get PDF
    We present of a detailed photoluminescence characterization of high efficiency GaAs/AlGaAs quantum nanostructures grown on silicon substrates. The whole process of formation of the GaAs/AlGaAs active layer was realized via droplet epitaxy and migration enhanced epitaxy maintaining the growth temperature ≤350°C, thus resulting in a low thermal budget procedure compatible with back-end integration of the fabricated materials on integrated circuits

    Scaling hetero-epitaxy from layers to three-dimensional crystals

    Get PDF
    Laying It on Thick The growth of one layered material onto a second lies at the heart of many electronic devices. However, if there is a lattice mismatch between the two materials, strains develop in the overgrowth material leading to bowing and cracking. Falub et al. (p. 1330 ; see the cover) patterned Si substrates into a series of pillars onto which they grew a germanium layer. The germanium initially coated the top of each silicon pillar but then widened as the layer thickened, leading to thick, crack-free germanium films. </jats:p

    Ge-rich graded-index SiGe alloys: exploring a versatile platform for mid-IR photonics

    Get PDF
    International audienceIn this paper, the recent progress on a new Ge-rich SiGe platform for mid-IR integrated photonics is presented. Low-loss spiral waveguides working over a broadband wavelength range are discussed, followed by a sensing proof-of-concept using a standalone photoresist with a known spectral absorption pattern. In addition, the development of new mid-IR interferometric devices for wavelength filtering and enhancement of the light-matter interaction are presented. Finally, efficient designs to exploit the third-order nonlinearities in these Ge-rich SiGe waveguides at mid-IR wavelengths are shown. The demonstration of these key building blocks will pave the way towards the implementation of new mid-IR photonic integrated systems with multiple functionalities

    New periodic variable stars coincident with ROSAT sources discovered using SuperWASP

    Get PDF
    We present optical lightcurves of 428 periodic variable stars coincident with ROSAT X-ray sources, detected using the first run of the SuperWASP photometric survey. Only 68 of these were previously recognised as periodic variables. A further 30 of these objects are previously known pre-main sequence stars, for which we detect a modulation period for the first time. Amongst the newly identified periodic variables, many appear to be close eclipsing binaries, their X-ray emission is presumably the result of RS CVn type behaviour. Others are probably BY Dra stars, pre-main sequence stars and other rapid rotators displaying enhanced coronal activity. A number of previously catalogued pulsating variables (RR Lyr stars and Cepheids) coincident with X-ray sources are also seen, but we show hat these are likely to be misclassifications. We identify four objects which are probable low mass eclipsing binary stars, based on their very red colour and light curve morphology

    Ordered Arrays of SiGe Islands from Low-Energy PECVD

    Get PDF
    SiGe islands have been proposed for applications in the fields of microelectronics, optoelectronics and thermoelectrics. Although most of the works in literature are based on MBE, one of the possible advantages of low-energy plasma-enhanced chemical vapor deposition (LEPECVD) is a wider range of deposition rates, which in turn results in the possibility of growing islands with a high Ge concentration. We will show that LEPECVD can be effectively used for the controlled growth of ordered arrays of SiGe islands. In order to control the nucleation of the islands, patterned Si (001) substrates were obtained by e-beam lithography (EBL) and dry etching. We realized periodic circular pits with diameters ranging from 80 to 300 nm and depths from 65 to 75 nm. Subsequently, thin films (0.8–3.2 nm) of pure Ge were deposited by LEPECVD, resulting in regular and uniform arrays of Ge-rich islands. LEPECVD allowed the use of a wide range of growth rates (0.01–0.1 nm s−1) and substrates temperatures (600–750°C), so that the Ge content of the islands could be varied. Island morphology was characterized by AFM, while μ-Raman was used to analyze the Ge content inside the islands and the composition differences between islands on patterned and unpatterned areas of the substrate

    Controlling the polarization dynamics by strong THz fields in photoexcited germanium quantum wells

    Get PDF
    The interaction of strong single-cycle THz pulses with the optically induced polarization in germanium quantum wells is studied. With increasing THz field strength, it is observed that the excitonic resonances shift toward higher energy and broaden before weak signatures of a splitting of the exciton line occur. In comparison with high-quality GaAs-based quantum wells, where a much clearer Autler–Townes splitting is observed, the germanium system response is significantly more broadened and shows signatures of a quasi-steady-state behavior due to the intrinsic fast dephasing times dominated by intervalley scattering

    Cross-architecture tuning of silicon and SiGe-based quantum devices using machine learning

    Get PDF
    The potential of Si and SiGe-based devices for the scaling of quantum circuits is tainted by device variability. Each device needs to be tuned to operation conditions and each device realisation requires a different tuning protocol. We demonstrate that it is possible to automate the tuning of a 4-gate Si FinFET, a 5-gate GeSi nanowire and a 7-gate Ge/SiGe heterostructure double quantum dot device from scratch with the same algorithm. We achieve tuning times of 30, 10, and 92 min, respectively. The algorithm also provides insight into the parameter space landscape for each of these devices, allowing for the characterization of the regions where double quantum dot regimes are found. These results show that overarching solutions for the tuning of quantum devices are enabled by machine learning

    Scanning X-ray nanodiffraction: from the experimental approach towards spatially resolved scattering simulations

    Get PDF
    An enhancement on the method of X-ray diffraction simulations for applications using nanofocused hard X-ray beams is presented. We combine finite element method, kinematical scattering calculations, and a spot profile of the X-ray beam to simulate the diffraction of definite parts of semiconductor nanostructures. The spot profile could be acquired experimentally by X-ray ptychography. Simulation results are discussed and compared with corresponding X-ray nanodiffraction experiments on single SiGe dots and dot molecules
    corecore