736 research outputs found

    Accuracy Studies of a Magnetometer-Only Attitude-and-Rate-Determination System

    Get PDF
    A personal computer based system was recently prototyped that uses measurements from a three axis magnetometer (TAM) to estimate the attitude and rates of a spacecraft using no a priori knowledge of the spacecraft's state. Past studies using in-flight data from the Solar, Anomalous, and Magnetospheric Particles Explorer focused on the robustness of the system and demonstrated that attitude and rate estimates could be obtained accurately to 1.5 degrees (deg) and 0.01 deg per second (deg/sec), respectively, despite limitations in the data and in the accuracies of te truth models. This paper studies the accuracy of the Kalman filter in the system using several orbits of in-flight Earth Radiation Budget Satellite (ERBS) data and attitude and rate truth models obtained from high precision sensors to demonstrate the practical capabilities. This paper shows the following: Using telemetered TAM data, attitude accuracies of 0.2 to 0.4 deg and rate accuracies of 0.002 to 0.005 deg/sec (within ERBS attitude control requirements of 1 deg and 0.0005 deg/sec) can be obtained with minimal tuning of the filter; Replacing the TAM data in the telemetry with simulated TAM data yields corresponding accuracies of 0.1 to 0.2 deg and 0.002 to 0.005 deg/sec, thus demonstrating that the filter's accuracy can be significantly enhanced by further calibrating the TAM. Factors affecting the fillter's accuracy and techniques for tuning the system's Kalman filter are also presented

    Statistical Mechanics in the Extended Gaussian Ensemble

    Get PDF
    The extended gaussian ensemble (EGE) is introduced as a generalization of the canonical ensemble. The new ensemble is a further extension of the Gaussian ensemble introduced by J. H. Hetherington [J. Low Temp. Phys. {\bf 66}, 145 (1987)]. The statistical mechanical formalism is derived both from the analysis of the system attached to a finite reservoir and from the Maximum Statistical Entropy Principle. The probability of each microstate depends on two parameters β\beta and γ\gamma which allow to fix, independently, the mean energy of the system and the energy fluctuations respectively. We establish the Legendre transform structure for the generalized thermodynamic potential and propose a stability criterion. We also compare the EGE probability distribution with the qq-exponential distribution. As an example, an application to a system with few independent spins is presented.Comment: Revtex 4, 8 pages, 8 figure

    Topology of event distribution as a generalized definition of phase transitions in finite systems

    Full text link
    We propose a definition of phase transitions in finite systems based on topology anomalies of the event distribution in the space of observations. This generalizes all the definitions based on the curvature anomalies of thermodynamical potentials and provides a natural definition of order parameters. The proposed definition is directly operational from the experimental point of view. It allows to study phase transitions in Gibbs equilibria as well as in other ensembles such as the Tsallis ensemble.Comment: 4 pages, 3 figure

    A Generalized Circle Theorem on Zeros of Partition Function at Asymmetric First Order Transitions

    Full text link
    We present a generalized circle theorem which includes the Lee-Yang theorem for symmetric transitions as a special case. It is found that zeros of the partition function can be written in terms of discontinuities in the derivatives of the free energy. For asymmetric transitions, the locus of the zeros is tangent to the unit circle at the positive real axis in the thermodynamic limit. For finite-size systems, they lie off the unit circle if the partition functions of the two phases are added up with unequal prefactors. This conclusion is substantiated by explicit calculation of zeros of the partition function for the Blume-Capel model near and at the triple line at low temperatures.Comment: 10 pages, RevTeX. To be published in PRL. 3 Figures will be sent upon reques

    Submillimeter Wave Astronomy Satellite (SWAS) Launch and Early Orbit Support Experiences

    Get PDF
    The Submillimeter Wave Astronomy Satellite (SWAS) was successfully launched on December 6, 1998 at 00:58 UTC. The two year mission is the fourth in the series of Small Explorer (SMEX) missions. SWAS is dedicated to the study of star formation and interstellar chemistry. SWAS was injected into a 635 km by 650 km orbit with an inclination of nearly 70 deg by an Orbital Sciences Corporation Pegasus XL launch vehicle. The Flight Dynamics attitude and navigation teams supported all phases of the early mission. This support included orbit determination, attitude determination, real-time monitoring, and sensor calibration. This paper reports the main results and lessons learned concerning navigation, support software, star tracker performance, magnetometer and gyroscope calibrations, and anomaly resolution. This includes information on spacecraft tip-off rates, first-day navigation problems, target acquisition anomalies, star tracker anomalies, and significant sensor improvements due to calibration efforts

    Extending canonical Monte Carlo methods II

    Full text link
    Previously, we have presented a methodology to extend canonical Monte Carlo methods inspired on a suitable extension of the canonical fluctuation relation C=β2C=\beta^{2} compatible with negative heat capacities C<0C<0. Now, we improve this methodology by introducing a better treatment of finite size effects affecting the precision of a direct determination of the microcanonical caloric curve β(E)=S(E)/E\beta (E) =\partial S(E) /\partial E, as well as a better implementation of MC schemes. We shall show that despite the modifications considered, the extended canonical MC methods possibility an impressive overcome of the so-called \textit{super-critical slowing down} observed close to the region of a temperature driven first-order phase transition. In this case, the dependence of the decorrelation time τ\tau with the system size NN is reduced from an exponential growth to a weak power-law behavior τ(N)Nα\tau(N)\propto N^{\alpha}, which is shown in the particular case of the 2D seven-state Potts model where the exponent α=0.140.18\alpha=0.14-0.18.Comment: Version submitted to JSTA

    SURFACE INDUCED FINITE-SIZE EFFECTS FOR FIRST ORDER PHASE TRANSITIONS

    Full text link
    We consider classical lattice models describing first-order phase transitions, and study the finite-size scaling of the magnetization and susceptibility. In order to model the effects of an actual surface in systems like small magnetic clusters, we consider models with free boundary conditions. For a field driven transition with two coexisting phases at the infinite volume transition point h=hth=h_t, we prove that the low temperature finite volume magnetization m_{\free}(L,h) per site in a cubic volume of size LdL^d behaves like m_\free(L,h)=\frac{m_++m_-}2 + \frac{m_+-m_-}2 \tanh \bigl(\frac{m_+-m_-}2\,L^d\, (h-h_\chi(L))\bigr)+O(1/L), where hχ(L)h_\chi(L) is the position of the maximum of the (finite volume) susceptibility and m±m_\pm are the infinite volume magnetizations at h=ht+0h=h_t+0 and h=ht0h=h_t-0, respectively. We show that hχ(L)h_\chi(L) is shifted by an amount proportional to 1/L1/L with respect to the infinite volume transitions point hth_t provided the surface free energies of the two phases at the transition point are different. This should be compared with the shift for periodic boun\- dary conditons, which for an asymmetric transition with two coexisting phases is proportional only to 1/L2d1/L^{2d}. One also consider the position hU(L)h_U(L) of the maximum of the so called Binder cummulant U_\free(L,h). While it is again shifted by an amount proportional to 1/L1/L with respect to the infinite volume transition point hth_t, its shift with respect to hχ(L)h_\chi(L) is of the much smaller order 1/L2d1/L^{2d}. We give explicit formulas for the proportionality factors, and show that, in the leading 1/L2d1/L^{2d} term, the relative shift is the same as that for periodic boundary conditions.Comment: 65 pages, amstex, 1 PostScript figur
    corecore