1,632 research outputs found
Raman Fingerprint of Charged Impurities in Graphene
We report strong variations in the Raman spectra for different single-layer
graphene samples obtained by micromechanical cleavage, which reveals the
presence of excess charges, even in the absence of intentional doping. Doping
concentrations up to ~10^13 cm-2 are estimated from the G peak shift and width,
and the variation of both position and relative intensity of the second order
2D peak. Asymmetric G peaks indicate charge inhomogeneity on the scale of less
than 1 micron.Comment: 3 pages, 5 figure
Raman Spectroscopy of Graphene Edges
Graphene edges are of particular interest since their orientation determines the electronic properties. Here we present a detailed Raman investigation of graphene flakes with edges oriented at different crystallographic directions. We also develop a real space theory for Raman scattering to analyze the general case of disordered edges. The position, width, and intensity of G and D peaks are studied as a function of the incident light polarization. The D-band is strongest for polarization parallel to the edge and minimum for perpendicular. Raman mapping shows that the D peak is localized in proximity of the edge. For ideal edges, the D peak is zero for zigzag orientation and large for armchair, allowing in principle the use of Raman spectroscopy as a sensitive tool for edge orientation. However, for real samples, the D to G ratio does not always show a significant dependence on edge orientation. Thus, even though edges can appear macroscopically smooth and oriented at well-defined angles, they are not necessarily microscopically ordered
Raman spectra of epitaxial graphene on SiC and of epitaxial graphene transferred to SiO2
Raman spectra were measured for mono-, bi- and trilayer graphene grown on SiC
by solid state graphitization, whereby the number of layers was pre-assigned by
angle-resolved ultraviolet photoemission spectroscopy. It was found that the
only unambiguous fingerprint in Raman spectroscopy to identify the number of
layers for graphene on SiC(0001) is the linewidth of the 2D (or D*) peak. The
Raman spectra of epitaxial graphene show significant differences as compared to
micromechanically cleaved graphene obtained from highly oriented pyrolytic
graphite crystals. The G peak is found to be blue-shifted. The 2D peak does not
exhibit any obvious shoulder structures but it is much broader and almost
resembles a single-peak even for multilayers. Flakes of epitaxial graphene were
transferred from SiC onto SiO2 for further Raman studies. A comparison of the
Raman data obtained for graphene on SiC with data for epitaxial graphene
transferred to SiO2 reveals that the G peak blue-shift is clearly due to the
SiC substrate. The broadened 2D peak however stems from the graphene structure
itself and not from the substrate.Comment: 27 pages, 8 figure
Doping dependence of the Raman peaks intensity of graphene near the Dirac point
Here we use pristine graphene samples in order to analyze how the Raman peaks
intensity, measured at 2.4 eV and 1.96 eV excitation energy, changes with the
amount of doping. The use of pristine graphene allows investigating the
intensity dependence close to the Dirac point. We show that the G peak
intensity is independent on the doping, while the 2D peak intensity strongly
decreases for increasing doping. Analyzing this dependence in the framework of
a fully resonant process, we found that the total electron-phonon scattering
rate is ~40 meV at 2.4 eV.Comment: 4 pages, 3 figures, submitted to PRB Brief Repor
Inkjet printed 2D-crystal based strain gauges on paper
We present an investigation of inkjet printed strain gauges based on two-dimensional (2D) materials. The technology leverages water-based and biocompatible inks to fabricate strain measurement devices on flexible substrates such as paper. We demonstrate that the device performance and sensitivity are strongly dependent on the printing parameter (i.e., drop-spacing, number of printing passes, etc.). We show that values of the Gauge Factor up to 125 can be obtained, with large sensitivity (>20) even when small strains (0.3) are applied. Furthermore, we provide preliminary examples of heterostructure-based strain sensors, enabled by the inkjet printing technology
Cascaded Optical Field Enhancement in Composite Plasmonic Nanostructures
Copyright © 2010 The American Physical SocietyWe present composite plasmonic nanostructures designed to achieve cascaded enhancement of electromagnetic fields at optical frequencies. Our structures were made with the help of electron-beam lithography and comprise a set of metallic nanodisks placed one above another. The optical properties of reproducible arrays of these structures were studied by using scanning confocal Raman spectroscopy. We show that our composite nanostructures robustly demonstrate dramatic enhancement of the Raman signals when compared to those measured from constituent elements
First-principles modeling of the polycyclic aromatic hydrocarbons reduction
Density functional theory modelling of the reduction of realistic
nanographene molecules (C42H18, C48H18 and C60H24) by molecular hydrogen
evidences for the presence of limits in the hydrogenation process. These limits
caused the contentions between three-fold symmetry of polycyclic aromatic
hydrocarbon molecules and two-fold symmetry of adsorbed hydrogen pairs.
Increase of the binding energy between nanographenes during reduction is also
discussed as possible cause of the experimentally observed limited
hydrogenation of studied nanographenes.Comment: 18 pages, 7 figures, accepted to J. Phys. Chem.
Graphene Photonics and Optoelectronics
The richness of optical and electronic properties of graphene attracts
enormous interest. Graphene has high mobility and optical transparency, in
addition to flexibility, robustness and environmental stability. So far, the
main focus has been on fundamental physics and electronic devices. However, we
believe its true potential to be in photonics and optoelectronics, where the
combination of its unique optical and electronic properties can be fully
exploited, even in the absence of a bandgap, and the linear dispersion of the
Dirac electrons enables ultra-wide-band tunability. The rise of graphene in
photonics and optoelectronics is shown by several recent results, ranging from
solar cells and light emitting devices, to touch screens, photodetectors and
ultrafast lasers. Here we review the state of the art in this emerging field.Comment: Review Nature Photonics, in pres
Raman Fingerprints of Atomically Precise Graphene Nanoribbons.
Bottom-up approaches allow the production of ultranarrow and atomically precise graphene nanoribbons (GNRs) with electronic and optical properties controlled by the specific atomic structure. Combining Raman spectroscopy and ab initio simulations, we show that GNR width, edge geometry, and functional groups all influence their Raman spectra. The low-energy spectral region below 1000 cm(-1) is particularly sensitive to edge morphology and functionalization, while the D peak dispersion can be used to uniquely fingerprint the presence of GNRs and differentiates them from other sp(2) carbon nanostructures.We acknowledge funding from: the Alexander von Humboldt Foundation in the framework of the Sofja Kovalevskaja Award, endowed by the Federal Ministry for Education and Research of Germany; the ESF project GOSPEL (Ref. No. 09-EuroGRAPHENE-FP-001); the European Research Council (grant NOC-2D, NANOGRAPH, and Hetero2D); the Italian Ministry of Research through the national projects PRIN-GRAF (Grant No. 20105ZZTSE) and FIRB-FLASHit (Grant No. RBFR12SWOJ); the DFG Priority Program SPP 1459; the Graphene Flagship (Ref. No. CNECT-ICT-604391); the EU project MoQuaS; EPSRC Grants (EP/K01711X/1, EP/K017144/1); the EU grant GENIUS; a Royal Society Wolfson Research Merit Award. Computer time was granted by PRACE at the CINECA Supercomputing Center (Grant No. PRA06 1348), and by the Center for Functional Nanomaterials at Brookhaven National Laboratory, supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under contract number DE-SC0012704.This is the author accepted manuscript. The final version is available from the American Chemical Society via http://dx.doi.org/10.1021/acs.nanolett.5b0418
Continuous-distribution puddle model for conduction in trilayer graphene
An insulator-to-metal transition is observed in trilayer graphene based on
the temperature dependence of the resistance under different applied gate
voltages. At small gate voltages the resistance decreases with increasing
temperature due to the increase in carrier concentration resulting from thermal
excitation of electron-hole pairs. At large gate voltages excitation of
electron-hole pairs is suppressed, and the resistance increases with increasing
temperature because of the enhanced electron-phonon scattering. We find that
the simple model with overlapping conduction and valence bands, each with
quadratic dispersion relations, is unsatisfactory. Instead, we conclude that
impurities in the substrate that create local puddles of higher electron or
hole densities are responsible for the residual conductivity at low
temperatures. The best fit is obtained using a continuous distribution of
puddles. From the fit the average of the electron and hole effective masses can
be determined.Comment: 18 pages, 5 figure
- …
