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Abstract 

We present an investigation of inkjet printed strain gauges based on two-dimensional (2D) 
materials. The technology leverages water-based and biocompatible inks to fabricate strain 
measurement devices on flexible substrates such as paper. We demonstrate that the device 
performance and sensitivity are strongly dependent on the printing parameter (i.e., drop-
spacing, number of printing passes, etc.). We show that values of the Gauge Factor up to 125 
can be obtained, with large sensitivity (>20%) even when small strains (0.3%) are applied. 
Furthermore, we provide preliminary examples of heterostructure-based strain sensors, enabled 
by the inkjet printing technology.  

  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IMT Institutional Repository

https://core.ac.uk/display/154402492?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1. Introduction 

Strain sensor technology is playing a vital role in a wide range of applications, spanning from 

the detection of subtle and large human motions [1][2], the reproduction of human skin sensory 

ability in robotics and health monitoring applications [3][4][5][6][7], and screening the 

reliability and durability of automotive, marine and aerospace structural systems [8][9]. 

Conventional strain gauges, while able to provide rich information about the 

mechanical stress, are typically cumbersome, costly to install and maintain (particularly for 

large-scale structures), they often require complex signal processing schemes and their 

replacement can be difficult. It is clear that such limitations can be prohibitive especially when 

such systems are used in wearable and portable electronics devices.  

As a consequence, low-cost, flexible, and easy to integrate strain gauges are needed in 

order to overcome these problems. From this point of view, printed strain sensors on paper 

could match the aforementioned requirements, due to the flexibility and extremely low cost 

[10] of such a solution.  

Piezoresistive sensors, which translate strain (ε) variations into changes of resistance 

(R) are widely used, due to their simple design and readout mechanism [11]. One of the most 

important figures of merit is the Gauge Factor (GF), which describes the change in resistance 

(ΔR=R-R0, where R0 is the nominal resistance) due to mechanical deformation, and can be 

expressed as GF= (ΔR/R0)/ε =S/ε, where S is the sensitivity. Note that metal foil gauges 

generally attain GF values of 2–4, while screen-printed polymer thick film sensors attain GF 

values ranging from 8 to 14 [12]. Semiconducting foil strain sensors can perform better, but 

they are fragile and work only with limited strain values [13]. 

Graphene-based strain sensors have attracted much attention because of the unique 

properties of this novel material, such as very high conductivity, mechanical strength, and 

flexibility [14][15]. Most of graphene-based piezoelectric sensors have been fabricated with 

graphene produced by means of Chemical-Vapour Deposition (CVD) [14][16]. However, this 

method requires expensive vacuum systems and time consuming post-growth processing, such 

as etching and transferring onto the flexible substrate. The transfer process can introduce 

damage on the graphene and leave polymer residuals, which can affect the performance of the 

strain gauge [17] and limits the reproducibility of this fabrication method. Furthermore, the GF 

predicted for graphene is rather low (~2.4 from calculations in [18]), due to its semi-metal 

character. Strategies such as cutting graphene into ribbons or introducing wrinkles have been 



used to increase the GF [17][19], further complicating the fabrication of such sensors and 

reducing their reliability.  

The use of solution-processed graphene offers a simple and low-cost way to easily 

fabricate the devices. However, in most cases, graphene is used as filler in a polymer or 

elastomer matrix or with carbon nanotubes (CNTs) to form a composite 

[20][21][22][23][24][25]. Therefore, the fabrication of the sensor requires several chemical 

processing steps; furthermore, most sensors still need to be glued on the surface to be inspected: 

typically, this is done by using epoxy glue [26], which requires high temperature curing (at 

about 80-100 °C) and careful preparation of the substrate surface. Ideally, one would like to 

fabricate the sensor directly on the surface to be inspected, possibly on curved or complex 

surfaces, without using any surface or sintering treatment, in order to integrate the device into 

a wide range of flexible substrates, such as paper.  

To the best of our knowledge, only very few studies report the direct fabrication on the 

substrate of graphene-only strain gauges (Table 1). Values of the GF between 4 and 200 have 

been obtained (Table 1), depending on the material and on the method used to fabricate the 

device. Spray coating and screen printing techniques have been previously used [13][25][27]. 

However, these methods typically produce relatively thick (and therefore less flexible) films, 

and they are characterized by a large amount of waste material and limited resolution and 

design flexibility (e.g. a shadow mask is required to fabricate the device). Alternatively, a layer-

by-layer assembly has been used [2], which requires several chemical processing steps and has 

limited design flexibility. Self-assembly [28] requires transfer of the film from the liquid to the 

flexible substrate. Finally, many of those approaches involve handling of toxic solvents and 

chemicals, and none of the strain gauges were fabricated directly on paper (Table 1). Only one 

seminal paper [29] reports a graphite-based strain gauge on paper made with a simple pencil. 

Therefore, there is the need to investigate low cost and mass scalable techniques, requiring 

minimal chemical processing, for direct fabrication on paper of graphene-based strain gauges.  

In this study, we have fabricated graphene strain gauges on paper by means of inkjet 

printing, with an extensive investigation over the printing parameters (i.e., print passes, drop-

spacing). Such an investigation is also of primary importance towards a complete 

understanding of the electrical properties of conductive graphene lines on flexible substrates, 

one of the main building blocks for printable electronics based on 2D materials, and their 

combinations through lateral and vertical heterostructures. Water-based and biocompatible 

inks of graphene were used with no pre- or post-processing of the devices [30]. A maximum 

GF of 125 has been obtained, associated to large sensitivity (>20%) even when small strains 



(0.3%) are applied. The advantage of inkjet printing is in its design flexibility, in particular in 

the possibility to build devices of arbitrary geometry in both the planar and the vertical 

directions. In this respect, we also shown preliminary results on heterostructure based strain 

gauges, made of graphene and hexagonal Boron Nitride (hBN). These initial devices show a 

higher GF, although more studies are needed to optimize the fabrication process and device 

performance. 

 

2. Experimental 
 

2.1 Material Preparation 

The graphene ink is formulated from graphite via ultrasonic-assisted liquid phase exfoliation 

[31] in water [30][32][33][34]. In details, 1.5 g of graphite flakes (Sigma Aldrich, 100+ mesh) 

and 500 mg of 1-Pyrenesulfonic acid sodium salt (PS1, from Sigma Aldrich) were mixed into 

500 mL of de-ionized (DI) water. The mixture was then sonicated at 300W using a Hilsonic 

bath sonicator for 5 days. Afterwards, unexfoliated graphite was removed by centrifugation 

(Sigma 1-14k refrigerated centrifuge) at 4000 rpm (1180g) for 20 minutes. The supernatant 

containing graphene and PS1 in water was collected and then centrifuged again at 15000 rpm 

for 1 h to collect the sediment. After centrifugation, the supernatant containing excess amount 

of PS1 in water was discarded. The precipitate was re-dispersed in the printing solvent, whose 

composition is described in [30]. The same process is used for h-BN (Sigma Aldrich, 98% 

purity, 1 µm size particles). 

 

2.2 Characterization 

The final concentration of graphene is determined by using the Beer-Lambert law and an 

absorption coefficient of 2460 L g-1 m-1, measured at 660 nm for graphene [35][36][37] and an 

absorption coefficient of 1000 L g-1 m-1measured at 550 nm for h-BN [38]. A Perkin-Elmer l-

900 UV-Vis-NIR spectrophotometer was used to acquire the spectra. 

A Bruker Atomic Force Microscope (MultiMode 8) in Peak Force Tapping mode, 

equipped with ScanAsyst-Air tips is used to determine the lateral size distribution of the flakes. 

The sample was prepared by drop casting the solution on a clean silicon substrate; several areas 

of 100 µm2 were scanned and about 130 flakes were selected for lateral size analysis. The same 

sample preparation has been used for Raman measurements; about 50 isolated flakes were 

measured. Raman measurements were performed using a Renishaw Invia Raman spectrometer 



equipped with a 514.5 nm excitation line with 1.0 mW laser power. 100X NA0.85 objective 

lens and 2400 grooves/mm grating were used. 

A Dimatix DMP-2850 inkjet printer (Fujifilm Dimatix, Inc., Santa Clara, USA) was 

used. This equipment can create and define patterns over an area of about 200 mm x 300 mm 

and handle substrates that are up to 25 mm thick. A waveform editor and a drop-watch camera 

system allows manipulation of the electronic pulses to the piezo jetting device for optimization 

of the drop characteristics as it is ejected from the nozzle. The nozzle plate consists of a single 

row of 16 nozzles with a 23 µm diameter, spaced 254 µm apart, with typical drop size of 10 pl. 

Among the many types of papers available on the market, we have selected the PEL P60 paper 

(from Printed Electronics Limited), characterized by a micro-porous surface treatment, 

designed to wick away the carrier solvent of the ink, while allowing for uniform deposition.  

Electrical measurements have been performed by means of a Keithley 4200-SCS 

Parameters Analyzer at room temperature and in air, in order to evaluate the variation of the 

resistance of the strain sensor at different applied strain values. Strain has been imposed by 

constraining the strain gauge on substrates with different curvatures. As in [27], the applied 

strain (e) can be expressed as 𝜀 = 𝑡/2𝑟, where t is the thickness of the paper substrate (250 

µm) and r the radius of the substrate on which the strain gauge is deposited (in our case, this is 

between 4.4 and 1 cm, leading to a maximum strain of 1.25 % with our setup). 

3. Results 

Figure 1a shows the UV-Vis spectrum of the graphene ink (diluted 100x) used to print the 

strain gauges. Using the Beer-Lambert law, we estimated a concentration of ~1.81 mg/mL, 

which is high enough to print conductive graphene lines with few printing passes [30]. 

Figure 1b shows the distribution in lateral size of the nanosheets: most of the flakes 

have lateral size between 50 and 400 nm. The majority of the material has a lateral size of ~200 

nm, which satisfies the inkjet printer requirements to avoid nozzle blockage. 

Figure 1c shows some representative Raman spectra measured on individual flakes. 

Raman spectroscopy is a very powerful technique for the characterization of graphene [39][40]. 

The typical Raman spectrum of pristine graphene shows the D and G peaks, placed at about 

1350 and 1580 cm-1, respectively [41]. A single and sharp 2D peak is typically used to identify 

graphene [41]. However, the Raman spectrum of liquid-phase exfoliated graphene is strongly 

affected by the exfoliation process: during sonication, the nanosheets are subjected to strong 

mechanical stress originating from the process of formation and collapse of bubbles and voids 



in the liquid. This ultimately breaks the flakes into smaller and thinner pieces. This is reflected 

in the Raman spectrum, which is typically characterized by the D peak – this mode is activated 

by the edges of the nanosheets, having typical size comparable to or smaller than that of the 

laser spot [42]. Another effect is observed on the 2D peak, which can show complex lineshapes, 

likely due to folding and re-stacking of the flakes. In previous studies [43][44][45][46], we 

introduced and tested a simple qualitative method based on the shape and symmetry of the 2D 

peak to distinguish between single-layer graphene, few-layer sheets and graphitic material (> 

10 layers with AB stacking, intended as residual graphite). Using this method, we found that 

20-30% of the flakes are single-layer, while the majority of the flakes are few-layers.  

In the inset of Figure 2a, we show the layout of the printed graphene strain sensor. The 

graphene line is 10 mm long and 0.5 mm wide. Two graphene pads (10 x 5 mm2) have been 

also printed, to act as contacts. We have indeed experienced that using silver paste to directly 

connect the graphene line ends to wires does lead to graphene delamination, due to the stiffness 

of the paste. In order to solve such an issue, we have printed graphene pads, to which crocodile 

clips have been applied on top of copper foils, in order to avoid direct contact of the clips to 

the sample (to prevent sample damage). Alternatively, we have observed that printed graphene 

pads can be substituted with a conductive glue (from Bare conductive), which assures high 

conductivity and excellent mechanical properties. 

Figure 2a shows the resistance of a graphene line made with 10 print passes as a 

function of the number of bending cycles (with a maximum strain of 1.25%). Here, and in the 

following experiments, the bending has been applied along the length of the strain sensor, 

parallel to the direction of current flow. The graphene line resistance remains almost constant 

through the bending cycles, with a maximum variation of 0.46% with respect to the mean value 

(i.e., 266.78 kW). In Figure 2b, we show the sensitivity as a function of time, while applying a 

positive and a negative strain, which leads to an increase (positive strain) and a decrease 

(negative strain) of the nominal resistance. 

In order to engineer the strain sensor, we have investigated the electrical behaviour of 

the graphene lines under different strains and for different printing parameters, as for example 

the number of printing passes and the drop spacing (unless otherwise specified, we refer to a 

drop spacing of 20 µm, which has been found to be optimal for minimizing the sheet resistance 

of the printed graphene lines on PEL P60 paper [30]). In particular, in Figure 3a, we show the 

resistance as a function of the inverse of the bending radius (1/r), and for different numbers of 

layers. As expected [30], the larger the number of printing passes (i.e., printed layers), the 



smaller the resistance. We have also considered a serpentine sensor (as the one shown in the 

inset of Figure 3a) made with 15 print passes. In this case, the resistance is larger in comparison 

with that of the other device, due to the reduced number of layers and the larger effective length. 

We have then extracted the sensitivity as a function of the applied strain, as shown in Figure 

3b. As can be seen, we observe a larger S for the sample with the larger number of layers, 

reaching a sensitivity greater than 100 %, for a curvature of 1 cm, i.e., a strain of 1.25%. For 

negative strain, instead, S seems to be independent of the strain sensor thickness. Note that the 

GF anisotropy between tension and compression was also observed with graphite pencil on 

paper [29]. Among the considered devices, the one with the serpentine shape shows the 

smallest sensitivity (grey squares in figure 3b), since, while applying the strain along the 

longitudinal direction, the line segments printed in the normal direction do not change their 

resistance, but still contribute to the overall resistance, eventually leading to a reduction of S. 

The increased sensitivity with the larger number of layers is in contrast with previous 

results presented in [13] and [47], where the opposite trend has been observed, i.e., larger S and 

larger gauge factors have been observed for decreasing concentration/thickness of the material. 

Such behaviour has been attributed to percolating path transport in the graphene network. In 

order to investigate this problem, we have printed strain devices using larger drop-spacing: this 

is expected to decrease the uniformity of the line, and therefore the probability of the flakes to 

be in contact or overlapped over a large area. 

Figure 4a shows the GF as a function of the resistance of the strain sensor, while 

considering two different values of the drop spacing, i.e., 40 and 70 µm. As can be seen, in this 

case, results are qualitatively in agreement with Ref. [13], i.e. the gauge factor increases for 

decreasing graphene resistance. This points out that tuning the printing parameters allows 

manufacturing strain sensors with very different characteristics. This also indicates that the GF 

strongly depends on how the flake concentration is distributed on the substrate. 

To shed a light on this effect, we have performed a mechanical and morphological 

investigation of the strain gauge, through the exploitation of two different measurement 

systems: a confocal profilometer with a lateral resolution of 1.66 µm and a scanning electron 

microscope (SEM) for in-situ micromechanical testing and inspection of microcracks 

nucleation and propagation. Results are shown in the Supplementary Material. As can be seen 

in Fig. S1, small drop spacing and thicker films can induce microcracks with higher density 

and larger crack openings upon strain. This higher sensitivity to deformation leads eventually 

to a higher gauge factor, as also observed in [49] in reduced graphene oxide.  



 

As already observed in [30], the porosity of the paper-based substrate allows printing 

with very small drop spacing, leading to deposition of a larger amount of material per unit area 

with fewer printing passes. From an engineering point of view, such an observation is very 

important, since it introduces new degrees of freedom for the design of strain sensors. In the 

case of traditional strain sensors, the GF is constant, while, by inkjet printing graphene lines, 

it becomes possible to tune the electro-mechanical properties of the sensor, acting upon the 

strain resistance and the printing parameters, and to tailor the sensor to specific needs and 

applications.   

One of the main advantages of inkjet printing compared to other deposition techniques 

is the possibility to fabricate complex devices, such as arrays of sensors or vertical 

heterostructures [30]. Here we exploit this flexibility in design, by showing the first 

heterostructure-based strain gauge, made of graphene and hexagonal Boron Nitride (hBN). The 

inset of Figure 4b shows the schematic of the device, consisting of a heterostructure made of 

hBN at the bottom and graphene on top (hBN/Gr). Figure 4b compares the GF of the hBN/Gr 

strain gauge (blue diamonds) with those obtained with graphene-only strain gauges, printed 

with 20 µm drop spacing. Such devices show the same qualitative trend as in the case of the 

graphene-only strain gauge (i.e. larger GF for smaller resistance), but have larger GF for the 

same values of resistance.  This is qualitatively in agreement with [50], where the presence of 

a layer between the (rubber) substrate and the graphene sensor led to an increase of the GF for 

the same value of resistance. The hBN layer may decrease the roughness of the paper and 

improve the adhesion of the device on the substrate. This opens up the possibility of adding a 

further degree of freedom to the device design space, towards the objective to achieve high-

performance and multi-functional strain sensors, by introducing different 2D materials and 

more complex geometries.  

In Figure 5a, we show the schematic of a simple circuit employing the strain sensor as 

a variable resistance in series to an LED (embedded on a paper substrate) and an external 

battery. As shown in Figure 5b, when tensile strain is applied, the resistance of the strain sensor 

increases, thus reducing the current and the luminosity of the LED. On the other hand, when 

compressive strain is applied, the resistance decreases, and the current increases, as well as the 

LED brightness. This simple circuit could find application as a first warning of an anomalous 

strain condition, in particular combining it with an energy scavenger for the power supply (e.g. 

to replace the battery). 



 

4. Conclusions 

We have demonstrated inkjet printed graphene-only strain gauges on paper with a gauge factor 

close to 150. Inkjet printing allows simple and fast fabrication of the sensor directly on the 

surface to be inspected, opening the possibility to define arrays of sensors over large areas or 

multisensing, by introducing different types of sensors in the array. Finally, inkjet printing 

allows full flexibility in the design of strain gauges, with the exploration of the printing 

parameters (i.e., drop-spacing, number of print passes etc.), and also with the possibility of 

exploiting combinations of different 2D materials (e.g., graphene and hBN). We have also 

shown some preliminary results on heterostructure-based strain gauges, which may inspire, 

after further investigation and optimization, new concepts in the space of multi-functional 

strain gauges made of 2D materials. 
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Table	1	Summary	of	 the	publications	 reporting	direct	 fabrication	of	 strain	gauges	based	only	on	
graphene,	 using	 solution	 processing	 based	 methods.	 GNPs=	 graphene	 nanoplatelets;	 PSS=	
polystyrene	 sulfonate;	 PDMS=	 Polydimethylsiloxane;	 NMP=	 N-Methyl-2-	 pyrrolidone;	 PET=	
Polyethylene	 terephthalate;	 PEN=	 Polyethylene	 naphthalate;	 CNT=	 carbon	 nanotube;	 GO=	
Graphene	Oxide.		

Reference GF Material Fabrication Substrate 
 

[2] 
9-1100  

at 5% strain 
(no patterned 

substrate) 

Commercial GNPs in 
water, mixed with PSS 

Layer-by-layer 
with polymers 

Transfer 
on PDMS 

 
[13] 

10-200 
(max strain: 

2%) 

Microwave exfoliation, 
followed by NMP 

dispersion and solvent 
exchange 

spray coating PET 

 
 

[25] 

7.8-4 
(for increasing 
CNTs amount) 
at 0.2% strain 

CNT(bottom)/GNP(top) 
hybrid thin films; 

aqueous dispersions 
prepared by sonication 

with surfactant 

spray coating,  
90 °C 

PET 

 
[27] 

19.3 
at 0.7% strain 

Commercial graphite ink screen printing + 
thermal curing 
(120 °C, 30 

mins) 

PEN 

[28] 500  
at 1% strain 

Electrochemical 
exfoliation, followed by 
dispersion in ethanol 

Self-assembly 
technique 

Transfer 
on PDMS 

 
[48] 

0.11 (film) 
9.49 (ribbons) 

Reduced GO films and 
ribbons (20 μm width) 

laser scribing 
used for 
reduction 

PET 

[50] Max 35 
(max strain: 

5%) 

GNPs in water, mixed 
with surfactant 

Spray coating 
100 °C 

Rubber, 
covered 

with 
polymer 

film 
Our work Max 125 Water-based graphene 

inks 
Inkjet-printing paper 

	 	



Figure	1	a)	UV-Vis	spectrum	of	the	graphene	ink	used	(diluted	100X);	 inset:	picture	of	the	ink.	b)	
Lateral	 size	 distribution	 of	 the	 flakes	 as	 measured	 by	 AFM.	 c)	 Representative	 Raman	 spectra	
measured	on	isolated	flakes.	
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Figure	2	a)	Resistance	of	a	10	layers	graphene	line	as	a	function	of	the	number	of	bending	cycles,	for	
a	maximum	applied	strain	of	1.25%.	In	the	inset,	the	layout	of	the	printed	graphene	strain	sensor.	
b)	Sensitivity	as	a	function	of	time,	while	applying	a	positive	and	a	negative	strain.	
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Figure	 3	 a)	 Resistance	 as	 a	 function	of	 the	 inverse	of	 the	bending	 radius	 and	 for	 different	 layer	
thicknesses.	All	the	results	refer	to	devices	with	the	layout	shown	in	the	inset	of	Figure	2a,	except	
for	 the	grey	 (square	symbol)	 curve,	which	 refers	 to	 the	serpentine	 layout	 shown	 in	 the	 inset.	b)	
Sensitivity	as	a	function	of	1/r	for	different	layers.	
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Figure	4	a)	Gauge	Factor	as	a	function	of	strain	sensor	resistance	for	two	different	drop-spacings,	
i.e.,	40	and	70	µm.	b)	Gauge	Factor	as	a	function	of	the	resistance,	for	a	drop-spacing	of	20	µm.	In	
both	 figures,	 the	 dashed	 lines	 are	 a	 guide	 for	 the	 eye.	 Blue	 dots	 correspond	 to	 graphene/hBN	
heterostructures.	
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Figure	 5	 a)	 Schematic	 of	 the	 simple	 circuit	 fabricated	 on	 a	 paper	 substrate	 and	 employing	 the	
graphene	strain	sensor.	System	under	b)	tensile	and	c)	compressive	strain.		

	

	


