105 research outputs found

    The PRIAMO study: age- and sex-related relationship between prodromal constipation and disease phenotype in early Parkinson's disease.

    Get PDF
    OBJECTIVES: To explore the impact of sex and age on relationship between prodromal constipation and disease phenotype in Parkinson's disease at early stages. METHODS: A total of 385 Parkinson's disease patients from the PRIAMO study were classified according to the presence of prodromal constipation and followed for 24 months. Multivariable mixed-effect models were applied. All analyses were performed separately for sex (64.1% men) and median age (different by sex: 67 years-old in men and 68 years-old in women). RESULTS: As for sex, prodromal constipation was associated with greater odds of attention/memory complaints and apathy symptoms in women only. As for age, prodromal constipation was associated with lower cognitive and higher apathy scores in older patients only. CONCLUSIONS: Prodromal constipation anticipates lower cognitive performances and more severe apathy since the earliest stages in women and older patients. Sex- and age-related heterogeneity of prodromal markers of Parkinson's disease may impact disease phenotype

    Fractional Fourier transform of the Gaussian and fractional domain signal support

    No full text

    A Friction Sensor for Sheet-Metal Rolling

    No full text

    Analysis of the effects of numerical dispersion on pulses in finite-difference and pseudospectral time-domain methods

    No full text
    Finite difference (FD) and pseudospectral (PS) time‐domain methods are increasingly used forunderwater acoustics modeling. Numerical dispersion is unavoidable but can be reduced with an appropriate choice of temporal and spatial discretization (Δt and Δx). As pulses propagate, numerical dispersion causes time‐dilation which increases with simulation time and pulse bandwidth. Analysis of the dispersion relation leads to an equation which shows that the time‐dilation in a large FD model can be significant for well defined pulses of 50 points per wavelength (PPW). Reducing the dispersion requires a higher grid density. For a 2D model, the memory requirement and time costs vary as the inverse square and inverse cube of Δx. This is contrasted with the PS model in which the time‐dilation can be set arbitrarily small for any choice of Δx by reducing Δt. For a fixed spatial grid density, e.g., 10 PPW, the computational cost is linear in the temporal grid density. A locally optimized short‐time fractional Fourier transformshows that numerical dispersion has a dramatic effect on the time‐frequency characteristics of dispersed pulses, e.g., an input CW pulse becomes a nonlinear upward chirp. These effects are illustrated for a variety of pulses

    The fusion of large scale classified side-scan sonar image mosaics

    No full text
    corecore