42 research outputs found

    Author Correction: identification of fungal lignocellulose-degrading biocatalysts secreted by Phanerochaete chrysosporium via activity-based protein profiling

    Get PDF
    Correction to: Communications Biology https://doi.org/10.1038/s42003-022-04141-x, published online 16 November 2022.In the original version of the Article, an incorrect additional description of panel b in Figure 1 was included. The following sentence has now been removed:b Lignocellulose is a complex and recalcitrant polymer built up from cellulose, xylan (hemicellulose), and lignin. Its degradation requires the synergistic action of various different enzymes.Bio-organic Synthesi

    The anticonvulsive Phenhydan<sup>®</sup> suppresses extrinsic cell death.

    Get PDF
    Different forms of regulated cell death-like apoptosis and necroptosis contribute to the pathophysiology of clinical conditions including ischemia-reperfusion injury, myocardial infarction, sepsis, and multiple sclerosis. In particular, the kinase activity of the receptor-interacting serine/threonine protein kinase 1 (RIPK1) is crucial for cell fate in inflammation and cell death. However, despite its involvement in pathological conditions, no pharmacologic inhibitor of RIPK1-mediated cell death is currently in clinical use. Herein, we screened a collection of clinical compounds to assess their ability to modulate RIPK1-mediated cell death. Our small-scale screen identified the anti-epilepsy drug Phenhydan® as a potent inhibitor of death receptor-induced necroptosis and apoptosis. Accordingly, Phenhydan® blocked activation of necrosome formation/activation as well as death receptor-induced NF-κB signaling by influencing the membrane function of cells, such as lipid raft formation, thus exerting an inhibitory effect on pathophysiologic cell death processes. By targeting death receptor signaling, the already FDA-approved Phenhydan® may provide new therapeutic strategies for inflammation-driven diseases caused by aberrant cell death

    Protein phosphorylation and its role in archaeal signal transduction

    Get PDF
    Reversible protein phosphorylation is the main mechanism of signal transduction that enables cells to rapidly respond to environmental changes by controlling the functional properties of proteins in response to external stimuli. However, whereas signal transduction is well studied in Eukaryotes and Bacteria, the knowledge in Archaea is still rather scarce. Archaea are special with regard to protein phosphorylation, due to the fact that the two best studied phyla, the Euryarchaeota and Crenarchaeaota, seem to exhibit fundamental differences in regulatory systems. Euryarchaeota (e.g. halophiles, methanogens, thermophiles), like Bacteria and Eukaryotes, rely on bacterial-type two-component signal transduction systems (phosphorylation on His and Asp), as well as on the protein phosphorylation on Ser, Thr and Tyr by Hanks-type protein kinases. Instead, Crenarchaeota (e.g. acidophiles and (hyper)thermophiles) only depend on Hanks-type protein phosphorylation. In this review, the current knowledge of reversible protein phosphorylation in Archaea is presented. It combines results from identified phosphoproteins, biochemical characterization of protein kinases and protein phosphatases as well as target enzymes and first insights into archaeal signal transduction by biochemical, genetic and polyomic studie

    273umb_Schınheit.qxd

    No full text
    Abstract The halophilic archaea Halococcus (Hc.) saccharolyticus, Haloferax (Hf.) volcanii, and Halorubrum (Hr.) saccharovorum were found to generate acetate during growth on glucose and to utilize acetate as a growth substrate. The mechanisms of acetate formation from acetyl-CoA and of acetate activation to acetyl-CoA were studied. Hc. saccharolyticus, exponentially growing on complex medium with glucose, formed acetate and contained ADP-forming acetyl-CoA synthetase (ADP-ACS) rather than acetate kinase and phosphate acetyltransferase or AMP-forming acetyl-CoA synthetase. In the stationary phase, the excreted acetate was completely consumed, and cells contained AMP-forming acetyl-CoA synthetase (AMP-ACS) and a significantly reduced ADP-ACS activity. Hc. saccharolyticus, grown on acetate as carbon and energy source, contained only AMP-ACS rather than ADP-ACS or acetate kinase. Cell suspensions of Hc. saccharolyticus metabolized acetate only when they contained AMP-ACS activity, i.e., when they were obtained after growth on acetate or from the stationary phase after growth on glucose. Suspensions of exponential glucosegrown cells, containing only ADP-ACS but not AMP-ACS, did not consume acetate. Similar results were obtained for the phylogenetic distantly related halophilic archaea Hf. volcanii and Hf. saccharovorum. We conclude that, in halophilic archaea, the formation of acetate from acetyl-CoA is catalyzed by ADP-ACS, whereas the activation of acetate to acetyl-CoA is mediated by an inducible AMP-ACS

    Patientin mit Ă–demneigung und Hypereosinophilie

    No full text

    Sicca-Symptomatik, Dysphonie und unklare Hautveränderungen - die Histologie ändert die Therapie

    No full text

    Author Correction: identification of fungal lignocellulose-degrading biocatalysts secreted by Phanerochaete chrysosporium via activity-based protein profiling

    No full text
    Correction to: Communications Biology https://doi.org/10.1038/s42003-022-04141-x, published online 16 November 2022.In the original version of the Article, an incorrect additional description of panel b in Figure 1 was included. The following sentence has now been removed:b Lignocellulose is a complex and recalcitrant polymer built up from cellulose, xylan (hemicellulose), and lignin. Its degradation requires the synergistic action of various different enzymes.</p
    corecore