35 research outputs found

    Phenotypic microarrays suggest Escherichia coli ST131 is not a metabolically distinct lineage of extra-intestinal pathogenic E. coli

    Get PDF
    Extraintestinal pathogenic E. coli (ExPEC) are the major aetiological agent of urinary tract infections (UTIs) in humans. The emergence of the CTX-M producing clone E. coli ST131 represents a major challenge to public health worldwide. A recent study on the metabolic potential of E. coli isolates demonstrated an association between the E. coli ST131 clone and enhanced utilisation of a panel of metabolic substrates. The studies presented here investigated the metabolic potential of ST131 and other major ExPEC ST isolates using 120 API test reagents and found that ST131 isolates demonstrated a lower metabolic activity for 5 of 120 biochemical tests in comparison to non-ST131 ExPEC isolates. Furthermore, comparative phenotypic microarray analysis showed a lack of specific metabolic profile for ST131 isolates countering the suggestion that these bacteria are metabolically fitter and therefore more successful human pathogens

    Organised Genome Dynamics in the Escherichia coli Species Results in Highly Diverse Adaptive Paths

    Get PDF
    The Escherichia coli species represents one of the best-studied model organisms, but also encompasses a variety of commensal and pathogenic strains that diversify by high rates of genetic change. We uniformly (re-) annotated the genomes of 20 commensal and pathogenic E. coli strains and one strain of E. fergusonii (the closest E. coli related species), including seven that we sequenced to completion. Within the ∼18,000 families of orthologous genes, we found ∼2,000 common to all strains. Although recombination rates are much higher than mutation rates, we show, both theoretically and using phylogenetic inference, that this does not obscure the phylogenetic signal, which places the B2 phylogenetic group and one group D strain at the basal position. Based on this phylogeny, we inferred past evolutionary events of gain and loss of genes, identifying functional classes under opposite selection pressures. We found an important adaptive role for metabolism diversification within group B2 and Shigella strains, but identified few or no extraintestinal virulence-specific genes, which could render difficult the development of a vaccine against extraintestinal infections. Genome flux in E. coli is confined to a small number of conserved positions in the chromosome, which most often are not associated with integrases or tRNA genes. Core genes flanking some of these regions show higher rates of recombination, suggesting that a gene, once acquired by a strain, spreads within the species by homologous recombination at the flanking genes. Finally, the genome's long-scale structure of recombination indicates lower recombination rates, but not higher mutation rates, at the terminus of replication. The ensuing effect of background selection and biased gene conversion may thus explain why this region is A+T-rich and shows high sequence divergence but low sequence polymorphism. Overall, despite a very high gene flow, genes co-exist in an organised genome

    Enteric infections due to Escherichia coli.

    Get PDF
    JOURNAL ARTICLEinfo:eu-repo/semantics/publishe

    Molecular analysis of a composite chromosomal conjugative element (Tn3701) of Streptococcus pyogenes.

    No full text
    The plasmid-free Streptococcus pyogenes A454 contains a conjugative element, Tn3701, encoding resistance to erythromycin (Emr), tetracycline (Tcr), and minocycline (Mnr). We have mapped a 50-kilobase (kb) chromosomal region of A454 corresponding to the internal part of Tn3701. Tn3701 includes a 19.7-kb structure, designated Tn3703, on which the Emr Tcr Mnr determinants were localized. Tn3703 was very similar in structure to Tn916. Translocation of the Emr Tcr Mnr markers from A454 onto pIP964, an Enterococcus faecalis hemolysin plasmid, yielded different pIP964 derivatives. When the inserts of four of these derivatives were aligned with the 50-kb region of Tn3701, three of them were found to result from the transposition of Tn3703 and one resulted from the insertion of a 44.0-kb portion of Tn3701, including Tn3703. Tn3701 inserted, apparently without changing its structure, in the chromosomes of various streptococcal transconjugants, as well as in one of the 12 E. faecalis transconjugants studied. Tn3703 inserted at different chromosomal sites in four E. faecalis transconjugants, and one copy of Tn3701 plus an additional copy of Tn3703 were detected in the chromosomes of seven transconjugants
    corecore