239 research outputs found

    Lossless quantum data compression and variable-length coding

    Full text link
    In order to compress quantum messages without loss of information it is necessary to allow the length of the encoded messages to vary. We develop a general framework for variable-length quantum messages in close analogy to the classical case and show that lossless compression is only possible if the message to be compressed is known to the sender. The lossless compression of an ensemble of messages is bounded from below by its von-Neumann entropy. We show that it is possible to reduce the number of qbits passing through a quantum channel even below the von-Neumann entropy by adding a classical side-channel. We give an explicit communication protocol that realizes lossless and instantaneous quantum data compression and apply it to a simple example. This protocol can be used for both online quantum communication and storage of quantum data.Comment: 16 pages, 5 figure

    Trigger, an active release experiment that stimulated auroral particle precipitation and wave emissions

    Get PDF
    The experiment design, including a description of the diagnostic and chemical release payload, and the general results are given for an auroral process simulation experiment. A drastic increase of the field aligned charged particle flux was observed over the approximate energy range 10 eV to more than 300 keV, starting about 150 ms after the release and lasting about one second. The is evidence of a second particle burst, starting one second after the release and lasting for tens of seconds, and evidence for a periodic train of particle bursts occurring with a 7.7 second period from 40 to 130 seconds after the release. A transient electric field pulse of 200 mv/m appeared just before the particle flux increase started. Electrostatic wave emissions around 2 kHz, as well as a delayed perturbation of the E-region below the plasma cloud were also observed. Some of the particle observations are interpreted in terms of field aligned electrostatic acceleration a few hundred kilometers above the injected plasma cloud. It is suggested that the acceleration electric field was created by an instability driven by field aligned currents originating in the plasma cloud

    Energy Requirements for Quantum Data Compression and 1-1 Coding

    Get PDF
    By looking at quantum data compression in the second quantisation, we present a new model for the efficient generation and use of variable length codes. In this picture lossless data compression can be seen as the {\em minimum energy} required to faithfully represent or transmit classical information contained within a quantum state. In order to represent information we create quanta in some predefined modes (i.e. frequencies) prepared in one of two possible internal states (the information carrying degrees of freedom). Data compression is now seen as the selective annihilation of these quanta, the energy of whom is effectively dissipated into the environment. As any increase in the energy of the environment is intricately linked to any information loss and is subject to Landauer's erasure principle, we use this principle to distinguish lossless and lossy schemes and to suggest bounds on the efficiency of our lossless compression protocol. In line with the work of Bostr\"{o}m and Felbinger \cite{bostroem}, we also show that when using variable length codes the classical notions of prefix or uniquely decipherable codes are unnecessarily restrictive given the structure of quantum mechanics and that a 1-1 mapping is sufficient. In the absence of this restraint we translate existing classical results on 1-1 coding to the quantum domain to derive a new upper bound on the compression of quantum information. Finally we present a simple quantum circuit to implement our scheme.Comment: 10 pages, 5 figure

    Constraints on the multiplicity of the most massive stars known: R136 a1, a2, a3, and c

    Get PDF
    The most massive stars known to date are R 136 a1, a2, a3, and c within the central cluster R 136a of the Tarantula nebula in the Large Magellanic Cloud (LMC), with reported masses in excess of 150-200MM_\odot. However, the mass estimation of these stars relies on the assumption that they are single. We collected three epochs of spectroscopy for R 136 a1, a2, a3, and c with the Space Telescope Imaging Spectrograph (STIS) of the Hubble Space Telescope (HST) in the years 2020-2021 to probe potential radial-velocity (RV) variations. We combine these epochs with an additional HST/STIS observation taken in 2012. We use cross-correlation to quantify the RVs, and establish constraints on possible companions to these stars up to periods of ~10 yr. Objects are classified as binaries when the peak-to-peak RV shifts exceed 50 km/s, and when the RV shift is significant with respect to errors. R 136 a1, a2, and a3 do not satisfy the binary criteria and are thus classified as putatively single, although formal peak-to-peak RV variability on the level 40 km/s is noted for a3. Only R 136 c is classified as binary, in agreement with literature. We can generally rule out massive companions (M2 > ~50 Msun) to R 136 a1, a2, and a3 out to orbital periods of < 1 yr (separations < 5 au) at 95% confidence, or out to tens of years (separations < ~100 au) at 50% confidence. Highly eccentric binaries (e > ~0.9) or twin companions with similar spectra could evade detection down to shorter periods (> ~10 d), though their presence is not supported by the relative X-ray faintness of R 136 a1, a2, and a3. We derive a preliminary orbital solution with a 17.2 d period for the X-ray bright binary R 136 c, though more data are needed to conclusively derive its orbit. Our study supports a lower bound of 150-200 MM_\odot on the upper-mass limit at LMC metallicityComment: Accepted to A&

    The R136 star cluster dissected with Hubble Space Telescope/STIS. I. Far-ultraviolet spectroscopic census and the origin of HeII 1640 in young star clusters

    Get PDF
    We introduce a HST/STIS stellar census of R136a, the central ionizing star cluster of 30 Doradus. We present low resolution far-ultraviolet STIS/MAMA spectroscopy of R136 using 17 contiguous 52x0.2 arcsec slits which together provide complete coverage of the central 0.85 parsec (3.4 arcsec). We provide spectral types of 90% of the 57 sources brighter than m_F555W = 16.0 mag within a radius of 0.5 parsec of R136a1, plus 8 additional nearby sources including R136b (O4\,If/WN8). We measure wind velocities for 52 early-type stars from CIV 1548-51, including 16 O2-3 stars. For the first time we spectroscopically classify all Weigelt & Baier members of R136a, which comprise three WN5 stars (a1-a3), two O supergiants (a5-a6) and three early O dwarfs (a4, a7, a8). A complete Hertzsprung-Russell diagram for the most massive O stars in R136 is provided, from which we obtain a cluster age of 1.5+0.3_-0.7 Myr. In addition, we discuss the integrated ultraviolet spectrum of R136, and highlight the central role played by the most luminous stars in producing the prominent HeII 1640 emission line. This emission is totally dominated by very massive stars with initial masses above ~100 Msun. The presence of strong HeII 1640 emission in the integrated light of very young star clusters (e.g A1 in NGC 3125) favours an initial mass function extending well beyond a conventional upper limit of 100 Msun. We include montages of ultraviolet spectroscopy for LMC O stars in the Appendix. Future studies in this series will focus on optical STIS/CCD medium resolution observations.Comment: 20 pages plus four Appendices providing LMC UV O spectral templates, UV spectral atlas in R136, wind velocities of LMC O stars and photometry of additional R136 source

    Three-dimensional distribution of ejecta in Supernova 1987A at 10 000 days

    Get PDF
    Due to its proximity, SN 1987A offers a unique opportunity to directly observe the geometry of a stellar explosion as it unfolds. Here we present spectral and imaging observations of SN 1987A obtained ~10,000 days after the explosion with HST/STIS and VLT/SINFONI at optical and near-infrared wavelengths. These observations allow us to produce the most detailed 3D map of H-alpha to date, the first 3D maps for [Ca II] \lambda \lambda 7292, 7324, [O I] \lambda \lambda 6300, 6364 and Mg II \lambda \lambda 9218, 9244, as well as new maps for [Si I]+[Fe II] 1.644 \mu m and He I 2.058 \mu m. A comparison with previous observations shows that the [Si I]+[Fe II] flux and morphology have not changed significantly during the past ten years, providing evidence that it is powered by 44Ti. The time-evolution of H-alpha shows that it is predominantly powered by X-rays from the ring, in agreement with previous findings. All lines that have sufficient signal show a similar large-scale 3D structure, with a north-south asymmetry that resembles a broken dipole. This structure correlates with early observations of asymmetries, showing that there is a global asymmetry that extends from the inner core to the outer envelope. On smaller scales, the two brightest lines, H-alpha and [Si I]+[Fe II] 1.644 \mu m, show substructures at the level of ~ 200 - 1000 km/s and clear differences in their 3D geometries. We discuss these results in the context of explosion models and the properties of dust in the ejecta.Comment: Accepted for publication in Ap

    What Powers the 3000-Day Light Curve of SN 2006gy?

    Get PDF
    SN 2006gy was the most luminous supernova (SN) ever observed at the time of its discovery and the first of the newly defined class of superluminous supernovae (SLSNe). The extraordinary energetics of SN 2006gy and all SLSNe (>10^(51) erg) require either atypically large explosion energies (e.g. pair-instability explosion) or the efficient conversion of kinetic into radiative energy (e.g. shock interaction). The mass-loss characteristics can therefore offer important clues regarding the progenitor system. For the case of SN 2006gy, both a scattered and thermal light echo from circumstellar material (CSM) have been reported at later epochs (day ∼800), ruling out the likelihood of a pair-instability event and leading to constraints on the characteristics of the CSM. Owing to the proximity of the SN to the bright host-galaxy nucleus, continued monitoring of the light echo has not been trivial, requiring the high resolution offered by the Hubble Space Telescope (HST) or ground-based adaptive optics (AO). Here, we report detections of SN 2006gy using HST and Keck AO at ∼3000 d post-explosion and consider the emission mechanism for the very late-time light curve. While the optical light curve and optical spectral energy distribution are consistent with a continued scattered-light echo, a thermal echo is insufficient to power the K′-band emission by day 3000. Instead, we present evidence for late-time infrared emission from dust that is radiatively heated by CSM interaction within an extremely dense dust shell, and we consider the implications on the CSM characteristics and progenitor system

    Early Lightcurves of Type Ia Supernovae are Consistent with Nondegenerate Progenitor Companions

    Full text link
    If Type Ia supernovae (SNe~Ia) result from a white dwarf being ignited by Roche lobe overflow from a nondegenerate companion, then as the supernova explosion runs into the companion star its ejecta will be shocked, causing an early blue excess in the lightcurve. A handful of these excesses have been found in single-object studies, but inferences about the population of SNe~Ia as a whole have been limited because of the rarity of multiwavelength followup within days of explosion. Here we present a three-year investigation yielding an unbiased sample of nine nearby (z<0.01z<0.01) SNe~Ia with exemplary early data. The data are truly multiwavelength, covering UBVgriUBVgri and Swift bandpasses, and also early, with an average first epoch 16.0 days before maximum light. Of the nine objects, three show early blue excesses. We do not find enough statistical evidence to reject the null hypothesis that SNe~Ia predominantly arise from Roche-lobe-overflowing single-degenerate systems (p=0.94p=0.94). When looking at the objects' colors, we find the objects are almost uniformly near-UV-blue, in contrast to earlier literature samples which found that only a third of SNe~Ia are near-UV-blue, and we find a seemingly continuous range of BVB-V colors in the days after explosion, again in contrast with earlier claims in the literature. This study highlights the importance of early, truly multiwavelength, high-cadence data in determining the progenitor systems of SNe~Ia and in revealing their diverse early behavior.Comment: 28 pages, 10 figure

    Type Ia Supernova Rate Measurements To Redshift 2.5 From CANDELS: Searching For Prompt Explosions In The Early Universe

    Get PDF
    dThe Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) was a multi-cycle treasury program on the Hubble Space Telescope (HST) that surveyed a total area of -0.25 deg2 with -900 HST orbits spread across five fields over three years. Within these survey images we discovered 65 supernovae (SNe) of all types, out to z 2.5. We classify -24 of these as Type Ia SNe (SNe Ia) based on host galaxy redshifts and SN photometry (supplemented by grism spectroscopy of six SNe). Here we present a measurement of the volumetric SN Ia rate as a function of redshift, reaching for the first time beyond z =- 2 and putting new constraints on SN Ia progenitor models. Our highest redshift bin includes detections of SNe that exploded when the universe was only -3 Gyr old and near the peak of the cosmic star formation history. This gives the CANDELS high redshift sample unique leverage for evaluating the fraction of SNe Ia that explode promptly after formation ( 40 Myr. However, mild tension is apparent between ground-based low-z surveys and space-based high-z surveys. In both CANDELS and the sister HST program CLASH (Cluster Lensing And Supernova Survey with Hubble), we find a low rate of SNe Ia at z > 1. This could be a hint that prompt progenitors are in fact relatively rare, accounting for only 20% of all SN Ia explosions-though further analysis and larger samples will be needed to examine that suggestion. Key words: infrared: general - supernovae:Astronom
    corecore