123 research outputs found

    Transcutaneous electrical nerve stimulation for advanced cancer pain inpatients in specialist palliative care—a blinded, randomized, sham-controlled pilot cross-over trial

    Get PDF
    Purpose Transcutaneous electrical nerve stimulation (TENS) is a treatment option for cancer pain, but the evidence is inconclusive. We aimed to evaluate the efficacy and safety of TENS. Methods A blinded, randomized, sham-controlled pilot cross-over trial (NCT02655289) was conducted on an inpatient specialist palliative care ward. We included adult inpatients with cancer pain ≥ 3 on an 11-point numerical rating scale (NRS). Intensity-modulated high TENS (IMT) was compared with placebo TENS (PBT). Patients used both modes according to their preferred application scheme during 24 h with a 24-h washout phase. The primary outcome was change in average pain intensity on the NRS during the preceding 24 h. Responders were patients with at least a “slight improvement.” Results Of 632 patients screened, 25 were randomized (sequence IMT-PBT = 13 and PBT-IMT = 12). Finally, 11 patients in IMT-PBT and 9 in PBT-IMT completed the study (N = 20). The primary outcome did not differ between groups (IMT minus PBT: − 0.2, 95% confidence interval − 0.9 to 0.6). However, responder rates were higher in IMT (17/20 [85%] vs. 10/20 [50%], p = 0.0428). Two patients experienced an uncomfortable feeling caused by the current, one after IMT and one after PBT. Seven patients (35%) desired a TENS prescription. Women and patients with incident pain were most likely to benefit from TENS. Conclusion TENS was safe, but IMT was unlikely to offer more analgesic effects than PBT. Even though many patients desired a TENS prescription, 50% still reported at least “slight pain relief” from PBT. Differences for gender and incident pain aspects demand future trials

    Deposition, Accumulation, and Alteration of Cl(-), NO3(-), ClO4(-) and ClO3(-) Salts in a Hyper-Arid Polar Environment: Mass Balance and Isotopic Constraints

    Get PDF
    The salt fraction in permafrost soils/sediments of the McMurdo Dry Valleys (MDV) of Antarctica can be used as a proxy for cold desert geochemical processes and paleoclimate reconstruction. Previous analyses of the salt fraction in MDV permafrost soils have largely been conducted in coastal regions where permafrost soils are variably affected by aqueous processes and mixed inputs from marine and stratospheric sources. We expand upon this work by evaluating permafrost soil/sediments in University Valley, located in the ultraxerous zone where both liquid water transport and marine influences are minimal. We determined the abundances of Cl(-), NO3(-, ClO4(-)and ClO3(-)in dry and ice-cemented soil/sediments, snow and glacier ice, and also characterized Cl(-) and NO3(-) isotopically. The data are not consistent with salt deposition in a sublimation till, nor with nuclear weapon testing fall-out, and instead point to a dominantly stratospheric source and to varying degrees of post depositional transformation depending on the substrate, from minimal alteration in bare soils to significant alteration (photodegradation and/or volatilization) in snow and glacier ice. Ionic abundances in the dry permafrost layer indicate limited vertical transport under the current climate conditions, likely due to percolation of snowmelt. Subtle changes in ClO4(-)/NO3(-) ratios and NO3(-) isotopic composition with depth and location may reflect both transport related fractionation and depositional history. Low molar ratios of ClO3(-)/ClO4(-) in surface soils compared to deposition and other arid systems suggest significant post depositional loss of ClO3(-), possibly due to reduction by iron minerals, which may have important implications for oxy-chlorine species on Mars. Salt accumulation varies with distance along the valley and apparent accumulation times based on multiple methods range from approximately 10 to 30 kyr near the glacier to 70-200 kyr near the valley mouth. The relatively young age of the salts and relatively low and homogeneous anion concentrations in the ice-cemented sediments point to either a mechanism of recent salt removal, or to relatively modern permafrost soils (less than 1 million years). Together, our results show that near surface salts in University Valley serve as an end-member of stratospheric sources not subject to biological processes or extensive remobilization

    RNA:protein ratio of the unicellular organism as a characteristic of phosphorous and nitrogen stoichiometry and of the cellular requirement of ribosomes for protein synthesis

    Get PDF
    Background Mean phosphorous:nitrogen (P:N) ratios and relationships of P:N ratios with the growth rate of organisms indicate a surprising similarity among and within microbial species, plants, and insect herbivores. To reveal the cellular mechanisms underling this similarity, the macromolecular composition of seven microorganisms and the effect of specific growth rate (SGR) on RNA:protein ratio, the number of ribosomes, and peptide elongation rate (PER) were analyzed under different conditions of exponential growth. Results It was found that P:N ratios calculated from RNA and protein contents in these particular organisms were in the same range as the mean ratios reported for diverse organisms and had similar positive relationships with growth rate, consistent with the growth-rate hypothesis. The efficiency of protein synthesis in microorganisms is estimated as the number of active ribosomes required for the incorporation of one amino acid into the synthesized protein. This parameter is calculated as the SGR:PER ratio. Experimental and theoretical evidence indicated that the requirement of ribosomes for protein synthesis is proportional to the RNA:protein ratio. The constant of proportionality had the same values for all organisms, and was derived mechanistically from the characteristics of the protein-synthesis machinery of the cell (the number of nucleotides per ribosome, the average masses of nucleotides and amino acids, the fraction of ribosomal RNA in the total RNA, and the fraction of active ribosomes). Impairment of the growth conditions decreased the RNA:protein ratio and increased the overall efficiency of protein synthesis in the microorganisms. Conclusion Our results suggest that the decrease in RNA:protein and estimated P:N ratios with decrease in the growth rate of the microorganism is a consequence of an increased overall efficiency of protein synthesis in the cell resulting from activation of the general stress response and increased transcription of cellular maintenance genes at the expense of growth related genes. The strong link between P:N stoichiometry, RNA:protein ratio, ribosomal requirement for protein synthesis, and growth rate of microorganisms indicated by the study could be used to characterize the N and P economy of complex ecosystems such as soils and the oceans

    National strategy for palliative care of severely ill and dying people and their relatives in pandemics (PallPan) in Germany - study protocol of a mixed-methods project

    Get PDF
    BACKGROUND In the SARS-CoV-2 pandemic, general and specialist Palliative Care (PC) plays an essential role in health care, contributing to symptom control, psycho-social support, and providing support in complex decision making. Numbers of COVID-19 related deaths have recently increased demanding more palliative care input. Also, the pandemic impacts on palliative care for non-COVID-19 patients. Strategies on the care for seriously ill and dying people in pandemic times are lacking. Therefore, the program 'Palliative care in Pandemics' (PallPan) aims to develop and consent a national pandemic plan for the care of seriously ill and dying adults and their informal carers in pandemics including (a) guidance for generalist and specialist palliative care of patients with and without SARS-CoV-2 infections on the micro, meso and macro level, (b) collection and development of information material for an online platform, and (c) identification of variables and research questions on palliative care in pandemics for the national pandemic cohort network (NAPKON). METHODS Mixed-methods project including ten work packages conducting (online) surveys and qualitative interviews to explore and describe i) experiences and burden of patients (with/without SARS-CoV-2 infection) and their relatives, ii) experiences, challenges and potential solutions of health care professionals, stakeholders and decision makers during the SARS-CoV-2 pandemic. The work package results inform the development of a consensus-based guidance. In addition, best practice examples and relevant literature will be collected and variables for data collection identified. DISCUSSION For a future \textquotedblpandemic preparedness\textquotedbl national and international recommendations and concepts for the~care of severely ill and dying people are necessary considering both generalist and specialist palliative care in the home care and inpatient setting

    2005- 2008 UNLV McNair Journal

    Full text link
    Journal articles based on research conducted by undergraduate students in the McNair Scholars Program Table of Contents Biography of Dr. Ronald E. McNair Statements: Dr. Neal J. Smatresk, UNLV President Dr. Juanita P. Fain, Vice President of Student Affairs Dr. William W. Sullivan, Associate Vice President for Retention and Outreach Mr. Keith Rogers, Deputy Executive Director of the Center for Academic Enrichment and Outreach McNair Scholars Institute Staf

    Intracellular Water Exchange for Measuring the Dry Mass, Water Mass and Changes in Chemical Composition of Living Cells

    Get PDF
    We present a method for direct non-optical quantification of dry mass, dry density and water mass of single living cells in suspension. Dry mass and dry density are obtained simultaneously by measuring a cell’s buoyant mass sequentially in an H[subscript 2]O-based fluid and a D[subscript 2]O-based fluid. Rapid exchange of intracellular H[subscript 2]O for D[subscript 2]O renders the cell’s water content neutrally buoyant in both measurements, and thus the paired measurements yield the mass and density of the cell’s dry material alone. Utilizing this same property of rapid water exchange, we also demonstrate the quantification of intracellular water mass. In a population of E. coli, we paired these measurements to estimate the percent dry weight by mass and volume. We then focused on cellular dry density – the average density of all cellular biomolecules, weighted by their relative abundances. Given that densities vary across biomolecule types (RNA, DNA, protein), we investigated whether we could detect changes in biomolecular composition in bacteria, fungi, and mammalian cells. In E. coli, and S. cerevisiae, dry density increases from stationary to exponential phase, consistent with previously known increases in the RNA/protein ratio from up-regulated ribosome production. For mammalian cells, changes in growth conditions cause substantial shifts in dry density, suggesting concurrent changes in the protein, nucleic acid and lipid content of the cell.National Cancer Institute (U.S.). Physical Sciences-Oncology Center (U54CA143874)National Institutes of Health (U.S.) (Center for Cell Division Process Grant P50GM6876)National Institutes of Health (U.S.) (Contract R01CA170592)United States. Army Research Office (Institute for Collaborate Biotechnologies Contract W911NF-09-D-0001

    In Vitro and In Vivo High-Throughput Assays for the Testing of Anti-Trypanosoma cruzi Compounds

    Get PDF
    The treatment of Trypanosoma cruzi infection (the cause of human Chagas disease) remains a significant challenge. Only two drugs, both with substantial toxicity, are available and the efficacy of these dugs is often questioned – in many cases due to the limitations of the methods for assessing efficacy rather than to true lack of efficacy. For these reasons relatively few individuals infected with T. cruzi actually have their infections treated. In this study, we report on innovative methods that will facilitate the discovery of new compounds for the treatment of T. cruzi infection and Chagas disease. Utilizing fluorescent and bioluminescent parasite lines, we have developed in vitro tests that are reproducible and facile and can be scaled for high-throughput screening of large compound libraries. We also validate an in vivo screening test that monitors parasite replication at the site of infection and determines the effectiveness of drug treatment in less than two weeks. More importantly, results in this rapid in vivo test show strong correlations with those obtained in long-term (e.g. 40 day or more) treatment assays. The results of this study remove one of the obstacles for identification of effective and safe compounds to treat Chagas disease

    Drosophila Sperm Swim Backwards in the Female Reproductive Tract and Are Activated via TRPP2 Ion Channels

    Get PDF
    Sperm have but one purpose, to fertilize an egg. In various species including Drosophila melanogaster female sperm storage is a necessary step in the reproductive process. Amo is a homolog of the human transient receptor potential channel TRPP2 (also known as PKD2), which is mutated in autosomal dominant polycystic kidney disease. In flies Amo is required for sperm storage. Drosophila males with Amo mutations produce motile sperm that are transferred to the uterus but they do not reach the female storage organs. Therefore Amo appears to be a mediator of directed sperm motility in the female reproductive tract but the underlying mechanism is unknown.Amo exhibits a unique expression pattern during spermatogenesis. In spermatocytes, Amo is restricted to the endoplasmic reticulum (ER) whereas in mature sperm, Amo clusters at the distal tip of the sperm tail. Here we show that flagellar localization of Amo is required for sperm storage. This raised the question of how Amo at the rear end of sperm regulates forward movement into the storage organs. In order to address this question, we used in vivo imaging of dual labelled sperm to demonstrate that Drosophila sperm navigate backwards in the female reproductive tract. In addition, we show that sperm exhibit hyperactivation upon transfer to the uterus. Amo mutant sperm remain capable of reverse motility but fail to display hyperactivation and directed movement, suggesting that these functions are required for sperm storage in flies.Amo is part of a signalling complex at the leading edge of the sperm tail that modulates flagellar beating and that guides a backwards path into the storage organs. Our data support an evolutionarily conserved role for TRPP2 channels in cilia
    corecore