347 research outputs found

    A first application of the Lightsolve approach: Pre-design of the new Belgian VELUX headquarters

    Get PDF
    This study presents the application of the “Lightsolve” method on the pre-design of a new sustainable building in order to optimize its daylighting. At the time of the project, this method combined climate-based illuminance and glare evaluations with visual renderings. Illuminances were presented according to a goal-oriented approach and glare was evaluated through the DGP. Both were displayed on temporal maps. The Lightsolve method was used to size lateral and zenithal openings and shading devices. A first conclusion of the study is that it is necessary to couple daylight metrics with a solar gain metric. Comparison between Lightsolve and daylight methods used in rating systems showed that these ones do not give enough accurate information for optimizing the daylighting design. Designer’s satisfaction evaluation showed that the goal-oriented approach and the temporal map representation were appreciated although this latter was rather difficult to understand. It also showed that an expert tool should be proposed in order to help designers to analyse their results. Finally, it was pointed out that the quality of daylight should be evaluated in Lightsolve, which will be done through a PhD work

    Differential roles of p39Mos–Xp42Mpk1 cascade proteins on Raf1 phosphorylation and spindle morphogenesis in Xenopus oocytes

    Get PDF
    AbstractFully-grown G2-arrested Xenopus oocytes resume meiosis upon hormonal stimulation. Resumption of meiosis is characterized by germinal vesicle breakdown, chromosome condensation, and organization of a bipolar spindle. These cytological events are accompanied by activation of MPF and the p39Mos–MEK1–Xp42Mpk1–p90Rsk pathways. The latter cascade is activated upon p39Mos accumulation. Using U0126, a MEK1 inhibitor, and p39Mos antisense morpholino and phosphorothioate oligonucleotides, we have investigated the role of the members of the p39Mos–MEK1–Xp42Mpk1–p90Rsk in spindle morphogenesis. First, we have observed at a molecular level that prevention of p39Mos accumulation always led to MEK1 phosphorylation defects, even when meiosis was stimulated through the insulin Ras-dependent pathway. Moreover, we have observed that Raf1 phosphorylation that occurs during meiosis resumption was dependent upon the activity of MEK1 or Xp42Mpk1 but not p90Rsk. Second, inhibition of either p39Mos accumulation or MEK1 inhibition led to the formation of a cytoplasmic aster-like structure that was associated with condensed chromosomes. Spindle morphogenesis rescue experiments using constitutively active Rsk and purified murine Mos protein suggested that p39Mos or p90Rsk alone failed to promote meiotic spindle organization. Our results indicate that activation of the p39Mos–MEK1–Xp42Mpk1–p90Rsk pathway is required for bipolar organization of the meiotic spindle at the cortex

    Application of the Lightsolve methodology for the pre-design of the new Belgian VELUX headquarters

    Get PDF
    Through the example of the VELUXBelgium building, this paper presents a real case application of a new methodology that is being developed to favor an interactive and intuitive approach of daylighting in buildings in the schematic design phase. The Lightsolve method, under development, is based on an interactive goal-oriented approach, and provides visual representations of annual, climate-based data that rely on a combination of sky distributions using the ASRC-CIE model. This paper focuses on the use of graphical representation of climate-based daylight performance metrics (illuminance and glare metrics) combined with luminance renderings for evaluating the design options occurring during the pre-design stage of the building

    Necessary Optimality Conditions for a Dead Oil Isotherm Optimal Control Problem

    Full text link
    We study a system of nonlinear partial differential equations resulting from the traditional modelling of oil engineering within the framework of the mechanics of a continuous medium. Recent results on the problem provide existence, uniqueness and regularity of the optimal solution. Here we obtain the first necessary optimality conditions.Comment: 9 page

    Sheared sheet intrusions as mechanism for lateral flank displacement on basaltic volcanoes: Applications to RĂ©union Island volcanoes

    Get PDF
    International audienceField work carried out on the Piton des Neiges volcano (RĂ©union Island) suggests that the injection of magma along detachments could trigger flank failure by conjugate opening and shear displacement. We use 3-D numerical models to compare the ability of purely opened sheet intrusions, sheared sheet intrusions, and normal faults to induce flank displacement on basaltic volcanoes. We assume that shear stress change on fractures results from stress anisotropy of the host rock under gravity. Exploring a large range of stress anisotropies, fracture dips, and fracture depth over length ratios, we determine that the amount of shear displacement is independent of the proximity to the ground surface. Sheared sheet intrusions are the most efficient slip medium on volcanoes. Consequently, the largest flank displacement is induced by the longest, deepest sheared intrusion dipping closest to 45° in a host rock with the highest stress anisotropy. Using our model in a forward way, we provide shear and normal displacements for buried fractures. Applying the model to a pile of sills at the Piton des Neiges volcano, we determine that the mean shear displacement caused by each intrusion was 3.7 m, leading to a total of a 180–260 m of lateral displacement for the 50 m high pile of sills. Using our model in an inverse way, we formulate a decision tree to determine some fracture characteristics and the host rock stress anisotropy from ratios of maximum surface displacements. This procedure provides a priori models, which can be used to bound the parameter space before it is explored through a formal inversion. Applying the decision tree to the 1.4 m coeruptive flank displacement recorded at Piton de la Fournaise in 2007, we find that it probably originated from a shallow eastward dipping subhorizontal normal fault

    A surface-patterned chip as a strong source of ultracold atoms for quantum technologies

    Get PDF
    Laser-cooled atoms are central to modern precision measurements. They are also increasingly important as an enabling technology for experimental cavity quantum electrodynamics, quantum information processing and matter–wave interferometry. Although significant progress has been made in miniaturizing atomic metrological devices, these are limited in accuracy by their use of hot atomic ensembles and buffer gases. Advances have also been made in producing portable apparatus that benefits from the advantages of atoms in the microkelvin regime. However, simplifying atomic cooling and loading using microfabrication technology has proved difficult. In this Letter we address this problem, realizing an atom chip that enables the integration of laser cooling and trapping into a compact apparatus. Our source delivers ten thousand times more atoms than previous magneto-optical traps with microfabricated optics and, for the first time, can reach sub-Doppler temperatures. Moreover, the same chip design offers a simple way to form stable optical lattices. These features, combined with simplicity of fabrication and ease of operation, make these new traps a key advance in the development of cold-atom technology for high-accuracy, portable measurement devices

    Stratification of unresponsive patients by an independently validated index of brain complexity.

    Get PDF
    OBJECTIVE: Validating objective, brain-based indices of consciousness in behaviorally unresponsive patients represents a challenge due to the impossibility of obtaining independent evidence through subjective reports. Here we address this problem by first validating a promising metric of consciousness-the Perturbational Complexity Index (PCI)-in a benchmark population who could confirm the presence or absence of consciousness through subjective reports, and then applying the same index to patients with disorders of consciousness (DOCs). METHODS: The benchmark population encompassed 150 healthy controls and communicative brain-injured subjects in various states of conscious wakefulness, disconnected consciousness, and unconsciousness. Receiver operating characteristic curve analysis was performed to define an optimal cutoff for discriminating between the conscious and unconscious conditions. This cutoff was then applied to a cohort of noncommunicative DOC patients (38 in a minimally conscious state [MCS] and 43 in a vegetative state [VS]). RESULTS: We found an empirical cutoff that discriminated with 100% sensitivity and specificity between the conscious and the unconscious conditions in the benchmark population. This cutoff resulted in a sensitivity of 94.7% in detecting MCS and allowed the identification of a number of unresponsive VS patients (9 of 43) with high values of PCI, overlapping with the distribution of the benchmark conscious condition. INTERPRETATION: Given its high sensitivity and specificity in the benchmark and MCS population, PCI offers a reliable, independently validated stratification of unresponsive patients that has important physiopathological and therapeutic implications. In particular, the high-PCI subgroup of VS patients may retain a capacity for consciousness that is not expressed in behavior

    A Dynamical Model of Oocyte Maturation Unveils Precisely Orchestrated Meiotic Decisions

    Get PDF
    Maturation of vertebrate oocytes into haploid gametes relies on two consecutive meioses without intervening DNA replication. The temporal sequence of cellular transitions driving eggs from G2 arrest to meiosis I (MI) and then to meiosis II (MII) is controlled by the interplay between cyclin-dependent and mitogen-activated protein kinases. In this paper, we propose a dynamical model of the molecular network that orchestrates maturation of Xenopus laevis oocytes. Our model reproduces the core features of maturation progression, including the characteristic non-monotonous time course of cyclin-Cdks, and unveils the network design principles underlying a precise sequence of meiotic decisions, as captured by bifurcation and sensitivity analyses. Firstly, a coherent and sharp meiotic resumption is triggered by the concerted action of positive feedback loops post-translationally activating cyclin-Cdks. Secondly, meiotic transition is driven by the dynamic antagonism between positive and negative feedback loops controlling cyclin turnover. Our findings reveal a highly modular network in which the coordination of distinct regulatory schemes ensures both reliable and flexible cell-cycle decisions

    Installation and Hardware commissioning of the Multi-Turn extraction at the CERN proton synchrotron

    Get PDF
    The implementation of the new Multi-Turn Extraction (MTE) at the CERN Proton Synchrotron required major hardware changes for the nearly 50-year old accelerator. The installation of new Pulse Forming Networks (PFN) and refurbished kicker magnets for the extraction, new sextupole and octupole magnets, new power converters, together with an in-depth review of the machine aperture leading to the design of new vacuum chambers was required. As a result, a heavy programme of interventions had to be scheduled during the winter shut-down 2007-8. The newly installed hardware and its commissioning is presented and discussed in details
    • 

    corecore