78 research outputs found

    Use of Confocal Laser as Light Source Reveals Stomata-Autonomous Function

    Get PDF
    In most terrestrial plants, stomata open during the day to maximize the update of CO(2) for photosynthesis, but they close at night to minimize water loss. Blue light, among several environmental factors, controls this process. Stomata response to diverse stimuli seems to be dictated by the behaviour of neighbour stomata creating leaf areas of coordinated response. Here individual stomata of Arabidopsis leaves were illuminated with a short blue-light pulse by focusing a confocal argon laser. Beautifully, the illuminated stomata open their pores, whereas their dark-adapted neighbours unexpectedly experience no change. This induction of individual stomata opening by low fluence rates of blue light was disrupted in the phototropin1 phototropin2 (phot1 phot2) double mutant, which exhibits insensitivity of stomatal movements in blue-illuminated epidermal strips. The irradiation of all epidermal cells making direct contact with a given stoma in both wild type and phot1 phot2 plants does not trigger its movement. These results unravel the stoma autonomous function in the blue light response and illuminate the implication of PHOT1 and/or PHOT2 in such response. The micro spatial heterogeneity that solar blue light suffers in partially shaded leaves under natural conditions highlights the physiological significance of the autonomous stomatal behaviour

    A meta-analysis of N-acetylcysteine in contrast-induced nephrotoxicity: unsupervised clustering to resolve heterogeneity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Meta-analyses of N-acetylcysteine (NAC) for preventing contrast-induced nephrotoxicity (CIN) have led to disparate conclusions. Here we examine and attempt to resolve the heterogeneity evident among these trials.</p> <p>Methods</p> <p>Two reviewers independently extracted and graded the data. Limiting studies to randomized, controlled trials with adequate outcome data yielded 22 reports with 2746 patients.</p> <p>Results</p> <p>Significant heterogeneity was detected among these trials (<it>I</it><sup>2 </sup>= 37%; <it>p </it>= 0.04). Meta-regression analysis failed to identify significant sources of heterogeneity. A modified L'Abbé plot that substituted groupwise changes in serum creatinine for nephrotoxicity rates, followed by model-based, unsupervised clustering resolved trials into two distinct, significantly different (<it>p </it>< 0.0001) and homogeneous populations (<it>I</it><sup>2 </sup>= 0 and <it>p </it>> 0.5, for both). Cluster 1 studies (<it>n </it>= 18; 2445 patients) showed no benefit (relative risk (RR) = 0.87; 95% confidence interval (CI) 0.68–1.12, <it>p </it>= 0.28), while cluster 2 studies (<it>n </it>= 4; 301 patients) indicated that NAC was highly beneficial (RR = 0.15; 95% CI 0.07–0.33, <it>p </it>< 0.0001). Benefit in cluster 2 was unexpectedly associated with NAC-induced decreases in creatinine from baseline (<it>p </it>= 0.07). Cluster 2 studies were relatively early, small and of lower quality compared with cluster 1 studies (<it>p </it>= 0.01 for the three factors combined). Dialysis use across all studies (five control, eight treatment; <it>p </it>= 0.42) did not suggest that NAC is beneficial.</p> <p>Conclusion</p> <p>This meta-analysis does not support the efficacy of NAC to prevent CIN.</p

    Arabidopsis COP1 shapes the temporal pattern of CO accumulation conferring a photoperiodic flowering response

    Get PDF
    The transcriptional regulator CONSTANS (CO) promotes flowering of Arabidopsis under long summer days (LDs) but not under short winter days (SDs). Post-translational regulation of CO is crucial for this response by stabilizing the protein at the end of a LD, whereas promoting its degradation throughout the night under LD and SD. We show that mutations in CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), a component of a ubiquitin ligase, cause extreme early flowering under SDs, and that this is largely dependent on CO activity. Furthermore, transcription of the CO target gene FT is increased in cop1 mutants and decreased in plants overexpressing COP1 in phloem companion cells. COP1 and CO interact in vivo and in vitro through the C-terminal region of CO. COP1 promotes CO degradation mainly in the dark, so that in cop1 mutants CO protein but not CO mRNA abundance is dramatically increased during the night. However, in the morning CO degradation occurs independently of COP1 by a phytochrome B-dependent mechanism. Thus, COP1 contributes to day length perception by reducing the abundance of CO during the night and thereby delaying flowering under SDs

    Physiology and pathophysiology of the vasopressin-regulated renal water reabsorption

    Get PDF
    To prevent dehydration, terrestrial animals and humans have developed a sensitive and versatile system to maintain their water homeostasis. In states of hypernatremia or hypovolemia, the antidiuretic hormone vasopressin (AVP) is released from the pituitary and binds its type-2 receptor in renal principal cells. This triggers an intracellular cAMP signaling cascade, which phosphorylates aquaporin-2 (AQP2) and targets the channel to the apical plasma membrane. Driven by an osmotic gradient, pro-urinary water then passes the membrane through AQP2 and leaves the cell on the basolateral side via AQP3 and AQP4 water channels. When water homeostasis is restored, AVP levels decline, and AQP2 is internalized from the plasma membrane, leaving the plasma membrane watertight again. The action of AVP is counterbalanced by several hormones like prostaglandin E2, bradykinin, dopamine, endothelin-1, acetylcholine, epidermal growth factor, and purines. Moreover, AQP2 is strongly involved in the pathophysiology of disorders characterized by renal concentrating defects, as well as conditions associated with severe water retention. This review focuses on our recent increase in understanding of the molecular mechanisms underlying AVP-regulated renal water transport in both health and disease

    Parâmetros psicométricos: uma análise de testes psicológicos comercializados no Brasil

    Full text link

    Densidade, tamanho e distribuição estomática em 35 espécies de árvores na Amazônia Central

    Get PDF
    Stomata are turgor-operated valves that control water loss and CO2 uptake during photosynthesis, and thereby water relation and plant biomass accumulation is closely related to stomatal functioning. The aims of this work were to document how stomata are distributed on the leaf surface and to determine if there is any significant variation in stomatal characteristics among Amazonian tree species, and finally to study the relationship between stomatal density (S D) and tree height. Thirty five trees (>17 m tall) of different species were selected. Stomatal type, density (S D), size (S S) and stomatal distribution on the leaf surface were determined using nail polish imprints taken from both leaf surfaces. Irrespective of tree species, stomata were located only on the abaxial surface (hypostomaty), with large variation in both S D and S S among species. S D ranged from 110 mm-2 in Neea altissima to 846 mm-2 in Qualea acuminata. However, in most species S D ranges between 271 and 543 mm-2, with a negative relationship between S D and S S. We also found a positive relationship between S D and tree height (r² = 0.14, p 17 m de altura) de diferentes espécies foram selecionadas. Tipo de complexo estomático, S D, tamanho (S S) e distribuição na superfície foliar foram determinados utilizando impressões de ambas as superfícies foliares com esmalte incolor. Independente da espécie, os estômatos foram encontrados apenas na superfície abaxial (hipoestomatia) com ampla variação na S D e no S S entre espécies. A densidade estomática variou de 110 mm-2 em Neea altissima a 846 mm-2 em Qualea acuminata. Entretanto, a maioria das espécies apresentou S D entre 271 e 543 mm-2, com uma relação negativa entre S D e S S. Observou-se uma relação positiva entre S D e altura arbórea (r² = 0.14, p < 0.01), não havendo relação entre S D e espessura foliar. Os tipos estomáticos mais comuns foram: anomocíticos (37%), seguidos de paracíticos (26%) e anisocíticos (11%). Concluiu-se que em espécies da Amazônia, a distribuição de estômatos na superfície foliar está mais relacionada a fatores genéticos de cada espécie do que a variações ambientais. Entretanto, S D é fortemente influenciada por fatores ambientais concernentes à altura da árvore
    • …
    corecore