183 research outputs found

    Primary amino acid composition and its use in discrimination of Greek red wines with regard to variety and cultivation region

    Get PDF
    The primary amino acid content of 54 Greek red wines from several regions and grape varieties was determined by reversed-phase high performance liquid chromatography (HPLC) using precolumn derivatization with OPA (o-phthalaldehyde) and fluorescence detection. For each wine sample, 21 amino acids have been determined. Wine samples from the 4 most common Greek red grape cultivars, which are part of the Greek VQPRD (Vins de Qualité Produits dans des Regions Délimitees) wines, and from 4 foreign red grape varieties, were used. Wines from cv. Kotsifali had the highest amino acid content among the samples from indigenous varieties, followed by those originating from cvs Agiorgitiko, Mandilaria and Xinomavro. In contrast to wines from cv. Grenache rouge, which contained high amounts of amino acids, those from Cabernet Sauvignon, Syrah and Merlot had lower amounts. A classification of samples on the basis of variety and region was achieved by application of the discriminant analysis of the amino acid composition data. 22 % of the wine samples, originating from grapes cultivated in 'organic vineyards', had a low arginine content.

    Digestibility of resistant starch containing preparations using two in vitro models

    Get PDF
    BACKGROUND: Resistant starch (RS) is known for potential health benefits in the human colon. To investigate these positive effects it is important to be able to predict the amount, and the structure of starch reaching the large intestine. AIM OF THE STUDY: The aim of this study was to compare two different in vitro models simulating the digestibility of two RS containing preparations. METHODS: The substrates, high amylose maize (HAM) containing RS type 2, and retrograded long chain tapioca maltodextrins (RTmd) containing RS type 3 were in vitro digested using a batch and a dynamic model, respectively. Both preparations were characterized before and after digestion by using X-Ray and DSC, and by measuring their total starch, RS and protein contents. RESULTS: Using both digestion models, 60-61 g/100 g of RTmd turned out to be indigestible, which is very well in accordance with 59 g/100 g found in vivo after feeding RTmd to ileostomy patients. In contrast, dynamic and batch in vitro digestion experiments using HAM as a substrate led to 58 g/100 g and 66 g/100 g RS recovery. The degradability of HAM is more affected by differences in experimental parameters compared to RTmd. The main variations between the two in vitro digestion methods are the enzyme preparations used, incubation times and mechanical stress exerted on the substrate. However, for both preparations dynamically digested fractions led to lower amounts of analytically RS and a lower crystallinity. CONCLUSIONS: The two in vitro digestion methods used attacked the starch molecules differently, which influenced starch digestibility of HAM but not of RTmd

    Agro-materials : a bibliographic review

    Get PDF
    Facing the problems of plastic recycling and fossil resources exhaustion, the use of biomass to conceive new materials appears like a reasonable solution. Two axes of research are nowadays developed : on the one hand the synthesis of biodegradable plastics, whichever the methods may be, on the other hand the utilization of raw biopolymers, which is the object of this paper. From this perspective, the “plastic” properties of natural polymers, the caracteristics of the different classes of polymers, the use of charge in vegetable matrix and the possible means of improving the durability of these agro-materials are reviewed

    Structural heterogeneities in starch hydrogels

    Get PDF
    Hydrogels have a complex, heterogeneous structure and organisation, making them promising candidates for advanced structural and cosmetics applications. Starch is an attractive material for producing hydrogels due to its low cost and biocompatibility, but the structural dynamics of polymer chains within starch hydrogels are not well understood, limiting their development and utilisation. We employed a range of NMR methodologies (CPSP/MAS, HR-MAS, HPDEC and WPT-CP) to probe the molecular mobility and water dynamics within starch hydrogels featuring a wide range of physical properties. The insights from these methods were related to bulk rheological, thermal (DSC) and crystalline (PXRD) properties. We have reported for the first time the presence of highly dynamic starch chains, behaving as solvated moieties existing in the liquid component of hydrogel systems. We have correlated the chains’ degree of structural mobility with macroscopic properties of the bulk systems, providing new insights into the structure-function relationships governing hydrogel assemblies

    Recovering Dietary Information from Extant and Extinct Primates Using Plant Microremains

    Get PDF
    When reconstructing the diets of primates, researchers often rely on several well established methods, such as direct observation, studies of discarded plant parts, and analysis of macrobotanical remains in fecal matter. Most of these studies can be performed only on living primate groups, however, and the diets of extinct, subfossil, and fossil groups are known only from proxy methods. Plant microremains, tiny plant structures with distinctive morphologies, can record the exact plant foods that an individual consumed. They can be recovered from recently deceased and fossil primate samples, and can also be used to supplement traditional dietary analyses in living groups. Here I briefly introduce plant microremains, provide examples of how they have been successfully used to reconstruct the diets of humans and other species, and describe methods for their application in studies of primate dietary ecology

    Differential scanning calorimetric analysis of edible oils: comparison of thermal properties and chemical composition

    Get PDF
    The thermal profiles of 17 edible oil samples from different plant origins were examined by differential scanning calorimetry (DSC). Two other confirmatory analytical techniques, namely gas-liquid chromatography (GLC) and high-performance liquid chromatography (HPLC), were used to determine fatty acid (FA) and triacylglycerol (TAG) compositions. The FA and TAG compositions were used to complement the DSC data. Iodine value (IV) analysis was carried out to measure the degree of unsaturation in these oil samples. The DSC melting and crystallization curves of the oil samples are reported. The contrasting DSC thermal curves provide a way of distinguishing among these oil samples. Generally, the oil samples with a high degree of saturation (IV65). Each thermal curve was used to determine three DSC parameters, namely, onset temperature (T o ), offset temperature (T f ) and temperature range (difference between T o and T f ). Reproducibility of DSC curves was evaluated based on these parameters. Satisfactory reproducibility was achieved for quantitation of these DSC parameters. The results show that T o of the crystallization curve and T f of the melting curve differed significantly (P<0.01) in all oil samples. Our observations strengthen the premise that DSC is an efficient and accurate method for characterizing edible oils
    corecore