511 research outputs found
The SU(2) X U(1) Electroweak Model based on the Nonlinearly Realized Gauge Group
The electroweak model is formulated on the nonlinearly realized gauge group
SU(2) X U(1). This implies that in perturbation theory no Higgs field is
present. The paper provides the effective action at the tree level, the Slavnov
Taylor identity (necessary for the proof of unitarity), the local functional
equation (used for the control of the amplitudes involving the Goldstone
bosons) and the subtraction procedure (nonstandard, since the theory is not
power-counting renormalizable). Particular attention is devoted to the number
of independent parameters relevant for the vector mesons; in fact there is the
possibility of introducing two mass parameters. With this choice the relation
between the ratio of the intermediate vector meson masses and the Weinberg
angle depends on an extra free parameter. We briefly outline a method for
dealing with \gamma_5 in dimensional regularization. The model is formulated in
the Landau gauge for sake of simplicity and conciseness: the QED Ward identity
has a simple and intriguing form.Comment: 19 pages, final version published by Int. J. Mod. Phys. A, some typos
corrected in eqs.(1) and (41). The errors have a pure editing origin.
Therefore they do not affect the content of the pape
The Algebra of Physical Observables in Nonlinearly Realized Gauge Theories
We classify the physical observables in spontaneously broken nonlinearly
realized gauge theories in the recently proposed loopwise expansion governed by
the Weak Power-Counting (WPC) and the Local Functional Equation. The latter
controls the non-trivial quantum deformation of the classical nonlinearly
realized gauge symmetry, to all orders in the loop expansion. The
Batalin-Vilkovisky (BV) formalism is used. We show that the dependence of the
vertex functional on the Goldstone fields is obtained via a canonical
transformation w.r.t. the BV bracket associated with the BRST symmetry of the
model. We also compare the WPC with strict power-counting renormalizability in
linearly realized gauge theories. In the case of the electroweak group we find
that the tree-level Weinberg relation still holds if power-counting
renormalizability is weakened to the WPC condition.Comment: 20 pages, 1 figur
A Massive Yang-Mills Theory based on the Nonlinearly Realized Gauge Group
We propose a subtraction scheme for a massive Yang-Mills theory realized via
a nonlinear representation of the gauge group (here SU(2)). It is based on the
subtraction of the poles in D-4 of the amplitudes, in dimensional
regularization, after a suitable normalization has been performed. Perturbation
theory is in the number of loops and the procedure is stable under iterative
subtraction of the poles. The unphysical Goldstone bosons, the Faddeev-Popov
ghosts and the unphysical mode of the gauge field are expected to cancel out in
the unitarity equation. The spontaneous symmetry breaking parameter is not a
physical variable. We use the tools already tested in the nonlinear sigma
model: hierarchy in the number of Goldstone boson legs and weak power-counting
property (finite number of independent divergent amplitudes at each order). It
is intriguing that the model is naturally based on the symmetry SU(2)_L local
times SU(2)_R global. By construction the physical amplitudes depend on the
mass and on the self-coupling constant of the gauge particle and moreover on
the scale parameter of the radiative corrections. The Feynman rules are in the
Landau gauge.Comment: 44 pages, 1 figure, minor changes, final version accepted by Phys.
Rev.
NIR-emission from Yb(III)- and Nd(III)-based complexes in the solid state sensitized by a ligand system absorbing in a broad UV and visible spectral window
In this contribution, we present the synthesis, characterization and spectroscopic investigation of the heteroleptic (R,R)-YbL1(tta) and (R,R)-NdL1(tta) complexes (with tta = 2-thenoyltrifluoroacetonate and L1 = N,N'-bis(2-(8-hydroxyquinolinate)methylidene)-1,2-(R,R or S,S)-cyclohexanediamine) in the solid state. The f-f metal-centered NIR luminescence emission of Nd(III) and Yb(III) is efficiently sensitized by both chromophoric ligands in a very broad range of wavelengths [from 250 to 600 nm, in the case of Nd(III) and from 250 to 650 nm, for Yb(III)]. A possible energy transfer mechanism is proposed: for (R,R)-NdL1(tta) complex a classical Ligand-to-Metal Energy Transfer (LMET) mechanism (antenna effect) is suggested, whilst in the case of the (R,R)-YbL1(tta) complex, the presence of a ligand-to-metal charge transfer (LMCT) state determines the sensitization of Yb(III) luminescence. We propose that this level is populated by the singlet and triplet excited states belonging to pi -> pi* and n -> pi* transitions of both ligands and it can transfer the excitation energy to F-2(5/2)
Lanthanide-Based Complexes Containing a Chiral trans-1,2-Diaminocyclohexane (DACH) Backbone: Spectroscopic Properties and Potential Applications
In this minireview, we give an overview on the use of the chiral molecule trans-1,2-diaminocyclohexane (DACH) in several fields of application. This chiral backbone is present in a variety of metal complexes which are employed in (enantioselective) catalysis, chiral discrimination, molecular recognition and supramolecular chemistry. Metal extraction and biochemical and pharmaceutical applications also use the DACH molecule. This contribution is particularly focused on the interesting chemical-physical properties discussed so far in the literature concerning lanthanide-based complexes containing chiral ligands characterized by the presence of DACH in the structure. In particular, the interconnection between luminescence (total and circularly polarized), structure and thermodynamics of Eu(III), Tb(III) and Sm(III) complexes will be discussed also in light of their use as optical or chiroptical probes for the sensing of important analytes dissolved in aprotic and protic polar solvents. Several complexes show potential interest in the solid state as phosphors for light emitting devices or for the detection of volatile organic compounds
Recommended from our members
Bone marrow vasculature advanced in vitro models for cancer and cardiovascular research
Copyright © 2023 Campanile, Bettinelli, Cerutti and Spinetti. Cardiometabolic diseases and cancer are among the most common diseases worldwide and are a serious concern to the healthcare system. These conditions, apparently distant, share common molecular and cellular determinants, that can represent targets for preventive and therapeutic approaches. The bone marrow plays an important role in this context as it is the main source of cells involved in cardiovascular regeneration, and one of the main sites of liquid and solid tumor metastasis, both characterized by the cellular trafficking across the bone marrow vasculature. The bone marrow vasculature has been widely studied in animal models, however, it is clear the need for human-specific in vitro models, that resemble the bone vasculature lined by endothelial cells to study the molecular mechanisms governing cell trafficking. In this review, we summarized the current knowledge on in vitro models of bone marrow vasculature developed for cardiovascular and cancer research.The author(s) declare financial support was received for the research, authorship, and/or publication of this article. MC and GS are supported by the Italian Ministry of Health (Ricerca Corrente and 5xmille to the IRCCS MultiMedica). CC is the recipient of the International Cancer Research Fellowship ICARE-2 funded from by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 800924 (“Single-cell epigenetic and molecular signatures in human breast cancer metastasis formation)
Operationalizing the concept of robustness of nitrogen networks in mixed smallholder systems:A pilot study in the mid-hills and lowlands of Nepal
Nitrogen (N) is often the most limiting nutrient to productivity in smallholder mixed crop-livestock systems such as commonly found in the mid-hills and lowland (Terai) of Nepal. Identifying current bottlenecks constraining agroecosystem functioning in terms of N flows and associated improvement options in these systems is paramount. Here, we explore variations in robustness, a concept from ecological network analysis (ENA) which represents the balance of system’s degree of order between organization (order/constraint) and adaptive flexibility (freedom/resilience) of N flows. Robustness can provide a detailed assessment of N flows and assist in evaluation of measures to reduce nutrient losses. In this study, the FarmDESIGN model was employed to quantify nitrogen flows, generate ENA indicators of integration, diversity and robustness, and to explore the impact of crop intensification options on N networks across farm types in the mid-hills and lowland (Terai) of Nepal. Results revealed that the farms in the different agroecosystems recycled only a small portion of the total N inputs (<15%), and had therefore high rates of N losses (63–1135 kg N per ha per year) and high dependency on N imports in the form of fodder (feed self-reliance 11–43%). The farm N networks were organised (high productivity) but inflexible (poorly resilient) and consequently unbalanced (low robustness). Scenarios of improved management (improved seed, intercropping, use of fertilizers, better timing of activities) resulted in improved crop production, leading to reduced fodder imports and less N losses. Consequently, the N networks increased in flexibility which resulted in greater robustness of the N flow network in the farm systems. Increasing on-farm biomass production by improved farm management could be an important element on the way to sustainably intensify smallholder farms, especially when dependency on external resources can be reduced. We conclude that a detailed analysis of nutrient flows and their robustness is a suitable instrument for targeted improvement of nutrient use in smallholder crop-livestock systems
A review of conflict and cohesion in social relationships in family firms
The literature on conflict and cohesion in social relationships in family firms has developed rapidly in recent decades. To take stock and provide directions to move this flourishing research area forward, we conduct a systematic review of the literature. We examine the prevailing conceptualizations of conflict and cohesion in social relationships in family firms, depict their drivers and outcomes, highlight their theoretical and empirical underpinnings, and propose an ontological framework to synthesize this large body of research. Drawing on our review, we identify some important research gaps and suggest fruitful directions for future research
A priori choice of neuraxial labour analgesia and breastfeeding initiation success: A community-based cohort study in an Italian baby-friendly hospital
Objective To investigate whether the nature of the decision about receiving neuraxial labour analgesia is associated with breastfeeding initiation success (BIS), defined as exclusive breastfeeding until discharge associated with postnatal weight loss <7% at 60 hours from birth. Design Single-centre community-based cohort study. Setting An Italian baby-friendly hospital, from 1 July 2011 to 22 September 2015. Participants Inclusion criteria: women vaginally delivering singleton cephalic newborns and willing to breastfeed. Exclusion criteria: women who delivered in uterus-dead fetuses, were single or requested but did not receive neuraxial analgesia. Overall, 775 out of the 3628 enrolled women received neuraxial analgesia. Results Compared with women who tried to cope with labour pain, those who decided a priori to receive neuraxial analgesia had less BIS (planned vaginal birth: 2121/3421 (62.0%), vs 102/207 (49.3%; p<0.001; risk difference (RD), 12.7%); actual vaginal birth: 1924/2994 (64.3%), vs 93/189 (49.2%; p<0.001; RD, 15.1%)). Multivariable analyses with antelabour-only confounders confirmed both associations (planned vaginal birth: relative risk (RR), 0.65; 95% CI, 0.48 to 0.87; actual vaginal birth: RR, 0.59; 95% CI, 0.43 to 0.80). Although women who requested analgesia as a last resort had less BIS than did those successfully coping with labour pain in the bivariable analyses (planned vaginal birth: 1804/2853 (63.2%), vs 317/568 (55.8%; p=0.001; RD, 7.4%); actual vaginal birth: 1665/2546 (65.4%), vs 259/448 (57.8%; p=0.002; RD, 7.6%)), multivariable analyses with either antelabour-only or peripartum confounders did not confirm these associations (planned vaginal birth: RR, 0.99; 95% CI, 0.80 to 1.23; actual vaginal birth: RR, 0.90; 95% CI, 0.69 to 1.16). Conclusions Compared with trying to cope with labour pain, a priori choice of neuraxial analgesia is negatively associated with BIS. Conversely, compared with having successfully coped with pain, requesting neuraxial analgesia as a last resort is not negatively associated with BIS
Inverted Opal Luminescent Ce-Doped Silica Glasses
Inverted opal Ce-doped silica glasses (Ce : Si molar ratio 1 ⋅ 10−3 were prepared by a sol-gel method using opals of latex microspheres as templates. The rare earth is homogeneously dispersed in silica host matrix, as evidenced by the absence of segregated CeO2, instead present in monolithic Ce-doped SG with the same cerium content. This suggests that the nanometric dimensions of bridges and junctions of the host matrix in the inverted opal structures favor the RE distribution avoiding the possible segregation of CeO2
- …