17 research outputs found

    Heritability of cortisol response to confinement stress in European sea bass dicentrarchus labrax

    Get PDF
    Background: In fish, the most studied production traits in terms of heritability are body weight or growth, stress or disease resistance, while heritability of cortisol levels, widely used as a measure of response to stress, is less studied. In this study, we have estimated heritabilities of two growth traits (body weight and length) and of cortisol response to confinement stress in the European sea bass. Findings: The F1 progeny analysed (n = 922) belonged to a small effective breeding population with contributions from an unbalanced family structure of just 10 males and 2 females. Heritability values ranged from 0.54 (+/- 0.21) for body weight to 0.65 (+/- 0.22) for standard body length and were low for cortisol response i.e. 0.08 (+/- 0.06). Genetic correlations were positive (0.94) between standard body length and body weight and negative between cortisol and body weight and between cortisol and standard body length (-0.60 and -0.55, respectively). Conclusion: This study confirms that in European sea bass, heritability of growth-related traits is high and that selection on such traits has potential. However, heritability of cortisol response to stress is low in European sea bass and since it is known to vary greatly among species, further studies are necessary to understand the reasons for these differences

    Quantitative Trait Loci Involved in Sex Determination and Body Growth in the Gilthead Sea Bream (Sparus aurata L.) through Targeted Genome Scan

    Get PDF
    Among vertebrates, teleost fish exhibit a considerably wide range of sex determination patterns that may be influenced by extrinsic parameters. However even for model fish species like the zebrafish Danio rerio the precise mechanisms involved in primary sex determination have not been studied extensively. The zebrafish, a gonochoristic species, is lacking discernible sex chromosomes and the sex of juvenile fish is difficult to determine. Sequential protandrous hermaphrodite species provide distinct determination of the gender and allow studying the sex determination process by looking at the mechanism of sex reversal. This is the first attempt to understand the genetic basis of phenotypic variation for sex determination and body weight in a sequential protandrous hermaphrodite species, the gilthead sea bream (Sparus aurata). This work demonstrates a fast and efficient strategy for Quantitative Trait Loci (QTL) detection in the gilthead sea bream, a non-model but target hermaphrodite fish species. Therefore a comparative mapping approach was performed to query syntenies against two other Perciformes, the European sea bass (Dicentrarchus labrax), a gonochoristic species and the Asian sea bass (Lates calcarifer) a protandrous hermaphrodite. In this manner two significant QTLs, one QTL affecting both body weight and sex and one QTL affecting sex, were detected on the same linkage group. The co-segregation of the two QTLs provides a genomic base to the observed genetic correlation between these two traits in sea bream as well as in other teleosts. The identification of QTLs linked to sex reversal and growth, will contribute significantly to a better understanding of the complex nature of sex determination in S. aurata where most individuals reverse to the female sex at the age of two years through development and maturation of the ovarian portion of the gonad and regression of the testicular area. [Genomic sequences reported in this manuscript have been submitted to GenBank under accession numbers HQ021443–HQ021749.

    Age-dependent QTL affecting body weight in gilthead seabream (Sparus aurata L.)

    No full text
    We examined 24 maternal half-sib families of gilthead seabream to identify quantitative trait loci (QTL) associated with body weight at four time points during a production cycle. 57 brooders and 637 offspring were genotyped for 14 informative microsatellite markers, spanning linkage groups 1 and 21. The QTL detection method was based on half-sib interval mapping analysis through a linear regression approach. One QTL was found significant at all time points in linkage group 1, with its effect having different profile across time, and one QTL in linkage group 21 that seems to impact body weight at a later growth stage of the species. Current results verified previously published QTL for growth in the above linkage groups, using a different genetic background of seabream. These QTL can be considered as valuable candidates for use in marker-assisted selective breeding programs, aiming at high rates of genetic improvement for growth in S. aurata.

    Genetic profiling and volatile oil content of oregano genotypes from greece

    No full text
    Several oregano genotypes belonging to Origanum vulgare subsp. hirtum (Link) Ietsw., O. onites L., and O. majorana L., Lamiaceae, from Greece, were genetically and chemically studied. Genetic analysis with microsatellite markers, showed the differentiation of O. onites genotypes from O. vulgare subsp. hirtum and O. majorana ones and revealed several diagnostic alleles which can be used for authentication of the plant raw material. The metabolic profiles of all oregano volatile oils contained carvacrol or thymol as their main volatile component, and others in lower concentration, such as γ-terpinene and p-cymene. Multivariate analyses revealed a clear distinction of the genotypes, based on their chemical composition. According to the Mantel test, there was no correlation between the metabolic and the genetic profile of the oregano genotypes. Molecular identification and chemical characterization contribute to the valorization of oregano material from Greece, which is in great demand, due to its high-quality properties and the various uses in food and pharmaceutical industry. © Sociedade Brasileira de Farmacognosia 2020

    Mapping quantitative trait loci in European sea bass (<i>Dicentrarchus labrax</i>): The BASSMAP pilot study

    No full text
    There are great opportunities for genetic improvement in recently domesticated aquaculture species. However, the lack of appropriate tools limits the application of advanced techniques including the mapping of quantitative trait loci (QTL) and marker-assisted selection (MAS). The recent development of a genetic linkage map for the European sea bass allows the application of such methods for the first time in this species. We report a pilot trial of QTL mapping in a commercial sea bass population as a precursor to the application of MAS. Fertilized eggs collected on a single spawning day produced a population composed of a few large families. Fish were grown under commercial conditions, slaughtered at approximately 470 g and measurements were taken for several traits. Parentage analysis showed that the population consisted of 26 full sib families, with a common dam and several sires. Seven microsatellite markers spanning the largest linkage group (LG1) were then genotyped in 27 parents and their 422 progeny, in order to perform a QTL scan using half-sib interval mapping approaches. Significant QTL affecting six morphometric traits including length and depth, are reported. The success of the procedure demonstrates that QTL analysis can be applied in this species and will contribute to the study and future improvement of traits associated with production, profitability and sustainability

    QTL affecting morphometric traits and stress response in the gilthead seabream (Sparus aurata).

    No full text
    incipient selective breeding programme. This study, which examined the genetic architecture of seabream morphology and stress response to confinement, takes a step toward the use of marker assisted selection in this species. Major loci affecting these traits were mapped, using data from 460 offspring derived from seven paternal and 73 maternal half-sib families. Fish were killed following a four-hour confinement experiment to induce stress, after which 15 morphometric measurements were collected and blood was sampled for DNA extraction and plasma cortisol level determination. Heritabilities for the morphometric traits were moderate to high (0.24–0.58), with genetic and phenotypic correlations between the traits generally very high. However, the heritability of plasma cortisol level was not significantly different from zero. A population-specific genetic linkage map was built for 56 microsatellite markers, comprising 16 linkage groups (LG) and ten unlinked markers. Half-sib and variance components QTL analyses detected a single genome-wide significant QTL (SaimbcF7b), a single unlinked marker explaining 13–23% of the phenotypic variance in the majority of the morphometric traits. Several other putative QTL were identified for morphometric traits (on LG 4a, 7, 9, 18, A, C, F and I), along with two other QTL (LG10 and B) that were suggestive for stress response. Fitting body weight as a covariate for the morphometric traits resulted in three genome-wide significant QTL affecting aspects of body shape independent of overall body size. For stress response we only identified suggestive evidence for QTL. These findings contribute to understanding the genetic regulation of important economic traits in seabream

    QTL for body weight, morphometric traits and stress response in European sea bass Dicentrarchus labrax.

    No full text
    Natural mating and mass spawning in the European sea bass (Dicentrarchus labrax L., Moronidae, Teleostei) complicate genetic studies and the implementation of selective breeding schemes. We utilized a two-step experimental design for detecting QTL in mass-spawning species: 2122 offspring from natural mating between 57 parents (22 males, 34 females and one missing) phenotyped for body weight, eight morphometric traits and cortisol levels, had been previously assigned to parents based on genotypes of 31 DNA microsatellite markers. Five large full-sib families (five sires and two dams) were selected from the offspring (570 animals), which were genotyped with 67 additional markers. A new genetic map was compiled, specific to our population, but based on the previously published map. QTL mapping was performed with two methods: half-sib regression analysis (paternal and maternal) and variance component analysis accounting for all family relationships. Two significant QTL were found for body weight on linkage group 4 and 6, six significant QTL for morphometric traits on linkage groups 1B, 4, 6, 7, 15 and 23 and three suggestive QTL for stress response on linkage groups 3, 14 and 23. The QTL explained between 8% and 38% of phenotypic variance. The results are the first step towards identifying genes involved in economically important traits like body weight and stress response in European sea bas
    corecore