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Heritability of cortisol response to confinement
stress in European sea bass dicentrarchus labrax
Filip AM Volckaert1, Bart Hellemans1, Costas Batargias2, Bruno Louro3, Cécile Massault4,5, Jeroen K J Van Houdt1,7,
Chris Haley4, Dirk-Jan de Koning4,6 and Adelino VM Canario3*

Abstract

Background: In fish, the most studied production traits in terms of heritability are body weight or growth, stress or
disease resistance, while heritability of cortisol levels, widely used as a measure of response to stress, is less studied.
In this study, we have estimated heritabilities of two growth traits (body weight and length) and of cortisol
response to confinement stress in the European sea bass.

Findings: The F1 progeny analysed (n = 922) belonged to a small effective breeding population with contributions
from an unbalanced family structure of just 10 males and 2 females. Heritability values ranged from 0.54 (±0.21) for
body weight to 0.65 (±0.22) for standard body length and were low for cortisol response i.e. 0.08 (±0.06). Genetic
correlations were positive (0.94) between standard body length and body weight and negative between cortisol
and body weight and between cortisol and standard body length (−0.60 and −0.55, respectively).

Conclusion: This study confirms that in European sea bass, heritability of growth-related traits is high and that
selection on such traits has potential. However, heritability of cortisol response to stress is low in European sea bass
and since it is known to vary greatly among species, further studies are necessary to understand the reasons for
these differences.

Findings
Farming of European sea bass (Dicentrarchus labrax, Mor-
onidae, Teleostei), represents about 100 000 tons produced
per year [1] and attracts extensive interest as a major fish
species for establishing breeding programmes to improve
production traits. In fish, the most studied production
traits in terms of heritability are body weight or growth,
stress or disease resistance [2-6].
In this work, our aim was to set up European sea bass

families by assigning parentage and heritability for three
traits i.e. cortisol response to stress, body weight and
standard body length to the progeny derived from the
batch of a single spawning day.

Methods
The methodology used for producing, phenotyping and
genotyping the F1 population has been described by
Massault et al [7]. In summary, the broodstock consisted

of 34 females, 22 males and one individual of undeter-
mined sex originating from wild and caged fish. From
this broodstock, 2000 offspring were raised for 254 days
under standard farm conditions and then distributed into
four tanks of 45 m3, each with a net covering the inner
surface. After this period of acclimatization, a confine-
ment stress was applied, which consisted in slowly pull-
ing the inner net of each tank so that the fish were
confined in a volume of approximately 0.2 m3. After 4 h
of confinement, the net was lifted and emptied into a
tank of icy water, a process which stuns the fish within
3 min. Each group of 500 fish was numbered serially,
bled, weighed and digitally photographed within 140 min
after stunning, either in the morning (11 am) or after-
noon (3 pm). Blood plasma was stored at −20°C for cor-
tisol analysis and red blood cells stored in absolute
ethanol for genetic analysis. Cortisol was measured by
radioimmunoassay and microsatellite genotyping was
carried out with three multiplex PCR (polymerase chain
reaction) [See Additional file 1]. All pedigree genotypes
from the 11 larger families (n = 922) were checked for
Mendelian errors before estimating heritabilities and
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correlations. Parentage assignment was implemented
using three software packages [i.e., CERVUS v.3.0; [8],
PAPA v.2.0; [9], VITASSIGN v.1.0; [10]] in order to con-
stitute families with the highest possible certainty. The
genotyping error rate was set to 1%. The assignment was
tested for power and performance and locus-specific
polymorphism information content (PIC) values were
calculated.
Heritabilities and phenotypic correlations were calcu-

lated using phenotypic data collected on 930 animals.
Eight animals were removed because of missing pheno-
types. Thus, the dataset used to estimate heritability
values comprised 922 animals, with missing values in
some variables (see Table 1). Heritabilities were esti-
mated using ASReml fitting an animal model. Several
fixed effects were tested (sample set, day, tube number
and assay number in cortisol assays) to check if they
influenced the trait in question. With the exception of
cortisol, the model was

TRAIT ¼ μþ Aþ E:

TRAIT represents the phenotypic trait, μ the trait
mean, A the additive genetic effect and E the environ-
mental effect. Only sample set was found to have an ef-
fect on cortisol and therefore sample set was added as
fixed effect to the model.
Phenotypic correlations were calculated with the soft-

ware GENSTAT v.10.

Parentage assignment and contributions
The 1151 progeny and 56 parents were genotyped at 29
microsatellite loci. The number of alleles per locus varied
between two and 10 and PIC values varied between 0.124
and 0.767 [see Additional file 2]. A power analysis was
conducted with the rarefaction method and showed that
10 loci were sufficient for a reliable assignment (details not
shown). A core group of five families contributed 71.5% to
the progeny, six families made a measurable contribution
and 80 families only a very small contribution. This is a
highly skewed family representation of at least 748 dam x
sire combinations with a low effective breeding size, which
might affect the estimates through the unwanted genetic
drift (or limited Mendelian sampling) caused by the

skewed representation. For the heritability and correlation
analyses, 922 offspring were used from which two females
(5.9%) and 10 males (45.5%) contributed the most [see
Additional file 3]. Our study shows that within a single
breeding day, the majority of the progeny can be produced
with the contribution of just two females and 10 males,
which amounts to an effective population size (Ne) of 6.7
while there were 43 participating breeders and a total
number of initial individuals of 57 (Ne/N=0.12). Thus,
artificial insemination provides the best guarantee to set
up experimental crosses since during natural spawning the
number of families with significant contribution can be
small.

Phenotypes
Basic descriptive statistics for the phenotypes are shown
in Table 1. Mean cortisol levels were constant over the
time of blood collection as indicated by the horizontal
regression lines in Figure 1 (range of coefficients of lin-
ear regression per tank −0.153 to 0.109; r2 = 2.10-3).

Heritabilities and correlations
Heritability values for growth traits ranged from 0.54± 0.21
for BW to 0.65± 0.22 for SL (Table 2). Such heritability
estimates support the large proportion of phenotypic vari-
ation explained by the QTL detected in Massault et al. [7]
and the reasons are discussed therein. For response to
stress, the heritability of CORT was 0.08± 0.06. However,
as noted above, the family structure is clearly suboptimal to
estimate heritabilities as evidenced by the high standard
errors of the estimates [11]. As expected, the phenotypic
correlation between BW and SL was high (0.94), whereas
CORT was not phenotypically correlated to either growth
trait. The genetic correlation between SL and BW was high
(0.94) and that between CORT and SL or BW was negative
(−0.55 and −0.60, respectively). These estimates confirm
data from previous studies in European seabass [12], rain-
bow trout [13] and Nile tilapia [14]. The value for body
weight heritability obtained in our study also agrees with
estimates previously reported in European sea bass, which
range from medium heritabilities (0.2 in [12], 0.38-0.44 in
[15] and 0.39 in [16,17]) to high heritabilities when taking
into account different environments (0.31-0.60 in [18]).
Generally, body length and body weight have moderate to
high heritability values in teleost fishes: 0.6 in Coho salmon,

Table 1 Phenotypic traits for which genetic parameters were estimated in European sea bass

Trait (unit) Abbreviation Mean Standard
deviation

Number of
individuals

Coefficient of
variation (%)

Body weight (g) BW 41.6 14.31 914 34.4

Standard length (cm) SL 13.4 1.60 876 11.9

Cortisol (ng.ml-1) CORT 318.5 141.36 713 44.4

Traits, abbreviation and measurements of mean, standard deviation and coefficient of variation.
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Oncorhynchus kisutch [19], 0.12-0.47 in brown trout, Salmo
trutta [20], 0.09-0.44 in carp, Cyprinus carpio [21,22], 0.38-
0.79 in Nile tilapia, Oreochromis niloticus [23,24], 0.64
(± 0.12) in cod, Gadus morhua [25], 0.38±0.07 in gilthead
seabream, Sparus aurata [26].
To our knowledge, studies on the heritability of cortisol

response to stress in fish have been limited to salmonids
[27-29] and cyprinids [21], which limits generalizations. In
addition, lines with high and low cortisol response to stress
have been selected in rainbow trout [29]. However, the her-
itability of cortisol response to stress appears to be variable
even among related species: 0.27-0.50 in rainbow trout,
Oncorhynchus mykiss [27,29,30] and 0.60 in carp [21], but
only 0.05 in Atlantic salmon Salmo salar [27,31]. These dis-
crepancies can be partly explained by the differences in spe-
cies and methodologies used to determine the cortisol
response. It should be noted that the time-dependence of
cortisol response to stress is a key element and a potential
source of error. However, the methodology used in our
study seems reliable since no apparent drift in cortisol

levels with time was observed after applying the confine-
ment stress (Figure 1). A comparative study on stunning
methods used in different fish farms for European sea bass
reported mean levels of cortisol response similar to that
obtained here, corresponding to a 5-fold increase in cortisol
compared to resting values when using ice [32]. In a pilot
study on gilthead seabream using the same methodology, a
significant change in cortisol levels of a control group not
subjected to stress was observed, but there was no signifi-
cant additional effect of ice-water on a group subjected to
confinement stress (A. Canario, unpublished observations).
Thus, the methodology adopted here for European sea bass
is appropriate and even 2 h after stunning, the levels of cor-
tisol obtained are due to the response to confinement
stress and should reflect individual variation. In conclu-
sion, in European sea bass, the growth traits measured
have a moderate to high heritability but the cortisol level,
as an indicator of response to stress, has a low heritability.
Whether this low heritability derives from an artefact or
an unbalanced family structure or whether it has a true
biological base needs further clarification.

Additional files

Additional file 1: Multiplex assignment to linkage group. Loci
included in each multiplex set and assigned to D. labrax linkage groups,
primer concentrations and comments on the 98 microsatellite markers
used to scan the genome of European sea bass.

Additional file 2: Parentage assignment statistics. Locus-specific PIC
(Polymorphic Information Content) values, test of Hardy-Weinberg
equilibrium (**: P< 0.05), null alleles, cumulative parentage assignment (in
percent) with one and no parent known at high (95%) and low (80%)
stringency.

Table 2 Heritabilities (bold), genetic correlations (upper
triangle) and phenotypic correlations (lower triangle) and
standard deviations (in brackets) for different traits in
European bass (n 922)

BW CORT SL

BW 0.54 (±0.21) −0.60 (±0.44) 0.94 (±0.07)

CORT −0.04 (±0.05) 0.08 (±0.06) −0.55 (±0.44)

SL 0.94 (±0.04) −0.05 (±0.06) 0.65 (±0.22)

BW Body weight, CORT Cortisol response, SL Standard length.

Figure 1 Scatter plot of distribution of sea bass plasma cortisol in relation to sampling time. Tanks 1, 2 and 3 represent groups of fish
analyzed from different tanks (n = 1687); please note that the Y-axis is on a log scale; the slopes of the three curves range between −0.15 and 0.11
(7.64 × 10-4< r2< 2.11 × 10-3).
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Additional file 3: Consensus pedigree. RESSPECIES ID code of male
and female parent, and number of offspring of the 11 largest families
(FS01 to FS11) of the experimental population of European sea bass. The
pedigree is based on assignments obtained with the software packages
CERVUS, PAPA, and VITASSIGN, and submission to the RESSPECIES
database (n = 922).
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