1,468 research outputs found
Accelerated Asymptotics for Diffusion Model Estimation
We propose a semiparametric estimation procedure for scalar homogeneous stochastic differential equations. We specify a parametric class for the underlying diffusion process and identify the parameters of interest by minimizing criteria given by the integrated squared difference between kernel estimates of drift and diffusion function and their parametric counterparts. The nonparametric estimates are simplified versions of those in Bandi and Phillips (1998). A complete asymptotic theory for the semiparametric estimates is developed. The limit theory relies on infill and long span asymptotics and the asymptotic distributions are shown to depend on the chronological local time of the underlying diffusion process. The estimation method and asymptotic results apply to both stationary and nonstationary processes. As is standard with semiparametric approaches in other contexts, faster convergence rates are attained than is possible in the fully functional case. From a purely technical point of view, this work merges two strands of the most recent econometrics literature, namely the estimation of nonlinear models of integrated time-series [Park and Phillips (1999, 2000)] and the functional identification of diffusions under minimal assumptions on the dynamics of the underlying process [Florens-Zmirou (1993), Jacod (1997), Bandi and Phillips (1998) and Bandi (1999)]. In effect, the 'minimum distance' type of estimation that is presented in this paper can be interpreted as extremum estimation for potentially nonstationary and nonlinear continuous-time models.
European Policies for the Stimulation of Development of SMEs
Europe’s small and medium-sized enterprises are the engine of the European economy and the main drivers for achieving sustainable growth and more and better jobs. At EU level, the European Commission has developed a comprehensive SME policy, which aims to ensure that Community policies and actions are small-business friendly and contribute to making Europe a more attractive place for setting up a company and doing business
Grid-scale Fluctuations and Forecast Error in Wind Power
The fluctuations in wind power entering an electrical grid (Irish grid) were
analyzed and found to exhibit correlated fluctuations with a self-similar
structure, a signature of large-scale correlations in atmospheric turbulence.
The statistical structure of temporal correlations for fluctuations in
generated and forecast time series was used to quantify two types of forecast
error: a timescale error () that quantifies the deviations between
the high frequency components of the forecast and the generated time series,
and a scaling error () that quantifies the degree to which the
models fail to predict temporal correlations in the fluctuations of the
generated power. With no knowledge of the forecast models, we
suggest a simple memory kernel that reduces both the timescale error
() and the scaling error ()
The scale of predictability
We introduce a new stylized fact: the hump-shaped behavior of slopes and coefficients of determination as a function of the aggregation horizon when running (forward/backward) predictive regressions of future excess market returns onto past economic uncertainty (as proxied by market variance, consumption variance, or economic policy uncertainty). To justify this finding formally, we propose a novel modeling framework in which predictability is specified as a property of low-frequency components of both excess market returns and economic uncertainty. We dub this property scale-specific predictability. We show that classical predictive systems imply restricted forms of scale-specific predictability. We conclude that for certain predictors, like economic uncertainty, the restrictions imposed by classical predictive systems may be excessively strong
Method for Cooling Nanostructures to Microkelvin Temperatures
We propose a new scheme aimed at cooling nanostructures to microkelvin
temperatures, based on the well established technique of adiabatic nuclear
demagnetization: we attach each device measurement lead to an individual
nuclear refrigerator, allowing efficient thermal contact to a microkelvin bath.
On a prototype consisting of a parallel network of nuclear refrigerators,
temperatures of mK simultaneously on ten measurement leads have been
reached upon demagnetization, thus completing the first steps toward ultracold
nanostructures.Comment: 4 pages, 3 (color) figure
Where surface physics and fluid dynamics meet: rupture of an amphiphile layer by fluid flow
We investigate the fluctuating pattern created by a jet of fluid impingent
upon an amphiphile-covered surface. This microscopically thin layer is
initially covered with 50 m floating particles so that the layer can be
visualized. A vertical jet of water located below the surface and directed
upward drives a hole in this layer. The hole is particle-free and is surrounded
by the particle-laden amphiphile region. The jet ruptures the amphiphile layer
creating a particle-free region that is surrounded by the particle-covered
surface. The aim of the experiment is to understand the (fluctuating) shape of
the ramified interface between the particle-laden and particle-free regions.Comment: published in Journal of Chemical Physic
Intra-instar larval cannibalism in Anopheles gambiae (s.s.) and Anopheles stephensi (Diptera: Culicidae)
BACKGROUND: Cannibalism has been observed in a wide range of animal taxa and its importance in persistence and stability of populations has been documented. In anopheline malaria vectors the inter-instar cannibalism between fourth- and first-instar larvae (L4-L1) has been shown in several species, while intra-instar cannibalism remains poorly investigated. In this study we tested the occurrence of intra-instar cannibalism within larvae of second-, third- and fourth-instar (L2, L3 and L4) of Anopheles gambiae (s.s.) and An. stephensi. Experiments were set up under laboratory conditions and the effects of larval density, duration of the contact period among larvae and the presence of an older larva (i.e. a potential cannibal of bigger size) on cannibalism rate were analysed. Cannibalism was assessed by computing the number of missing larvae after 24 and 48 h from the beginning of the experiments and further documented by records with a GoPro videocamera.
RESULTS: Intra-instar cannibalism was observed in all larval instars of both species with higher frequency in An. gambiae (s.s.) than in An. stephensi. In both species the total number of cannibalistic events increased from 0-24 to 0-48 h. The density affected the cannibalism rate, but its effect was related to the larval instar and to the presence of older larvae. Interestingly, the lower cannibalism rate between L4 larvae was observed at the highest density and the cannibalism rate between L3 larvae decreased when one L4 was added.
CONCLUSIONS: The present study provides experimental evidence of intra-instar cannibalism in the malaria vectors An. gambiae (s.s.) and An. stephensi and highlights the possible occurrence of complex interactions between all larval instars potentially present in the breeding sites. We hypothesize that the high density and the presence of a potential cannibal of bigger size could affect the readiness to attack conspecifics, resulting into low risk larval behavior and lower cannibalism rate. The understanding of cannibalistic behavior and the factors affecting it is of utmost importance for malaria vectors, as nutrition during larval development can strongly affect the fitness of adult female mosquitoes and ultimately their vector ability
Asaia, a versatile acetic acid bacterial symbiont, capable of cross-colonizing insects of phylogenetically-distant genera and orders
Bacterial symbionts of insects have been proposed for blocking transmission of vector-borne pathogens. However, in many vector models the ecology of symbionts and their capability of cross-colonizing different hosts, an important feature in the symbiotic control approach, is poorly known. Here we show that the acetic acid bacterium Asaia, previously found in the malaria mosquito vector Anopheles stephensi, is also present in and capable of cross-colonizing other sugar-feeding insects of phylogenetically distant genera and orders. PCR, real-time PCR and in situ-hybridization experiments showed Asaia in the body of the mosquito Aedes aegypti and the leafhopper Scaphoideus titanus, vectors of human viruses and a grapevine phytoplasma, respectively. Cross colonization patterns of the body of Ae. aegypti, An. stephensi and S. titanus have been documented with Asaia strains isolated from An. stephensi or Ae. aegypti, and labelled with plasmid- or chromosome-encoded fluorescent proteins (Gfp and DsRed, respectively). Fluorescence and confocal microscopy showed that Asaia, administered with the sugar meal, efficiently colonized guts, male and female reproductive systems and the salivary glands. The ability in cross-colonizing insects of phylogenetically distant orders indicates that Asaia adopts body invasion mechanisms independent from the host biological characteristics. This versatility is an important property for the development of symbiont-based therapies of different vector-borne diseases
- …
