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Abstract

Wind power fluctuations at the turbine and farm scales are generally not expected to be correlated
over large distances. When power from distributed farms feeds the electrical grid, fluctuations from
various farms are expected to smooth out. Using data from the Irish grid as a representative example,
we analyze wind power fluctuations entering an electrical grid. We find that not only are grid-scale
fluctuations temporally correlated up to a day, but they possess a self-similar structure—a signature of
long-range correlations in atmospheric turbulence affecting wind power. Using the statistical
structure of temporal correlations in fluctuations for generated and forecast power time series, we
quantify two types of forecast error: a timescale error (e, ) that quantifies deviations between the high
frequency components of the forecast and generated time series, and a scaling error (e;) that quantifies
the degree to which the models fail to predict temporal correlations in the fluctuations for generated
power. With no a priori knowledge of the forecast models, we suggest a simple memory kernel that
reduces both the timescale error (e.) and the scaling error (e, ).

1. Introduction

Renewable power generation, unlike conventional power, exhibits variability owing to natural fluctuations in
the energy source [1], with fluctuation time scales depending on the source type. Whereas biomass and
hydroelectric sources vary over long time periods, wind and solar photovoltaics exhibit short time scale
variability. Wind power, in particular, shares the spectral features of the turbulent wind from which it derives
energy at the scales of an individual turbine [2] and a wind farm [3, 4]. This spectral correspondence implies that
correlations of atmospheric turbulence are reflected in the temporal correlations of fluctuations in the generated
wind power. One normally assumes that geographically distant wind farms are independent and that temporal
correlations in the fluctuating wind power for each farm do not translate into long-range spatial correlations.
The total power entering the grid from a large number of distant farms is expected to be much smoother and to
exhibit much weaker high frequency fluctuations [5] than the power entering from a single wind farm or a single
turbine. This assumption forms the basis for proposals to interconnect local wind farms [6] for the purpose of
mitigating wind power fluctuations [5]. Whereas fluctuations do smooth out as an increasing number of wind
farms contribute to the aggregate power, it has been shown that the fluctuations are still larger than expected [7].
Using data from the Irish grid operator EIRGRID [8] as a representative example, we studied the temporal
correlations in the aggregate wind power entering the Irish grid. The Irish grid is fed by 224 wind farms [9]
spread across the Republic of Ireland, a much larger number of farms than the number in the aggregate power
previously considered in Texas [7]. We found that the aggregate wind power entering the Irish grid exhibits
temporally correlated fluctuations with a self-similar structure. The persistence of correlations, despite an order
of magnitude increase in the number of wind farms (and their spatial distribution), strongly points to the
presence of long-range spatial correlations in the atmospheric turbulence, which couples geographically
distributed wind farms, thereby rendering them non-independent. These results accord with prior studies
establishing the presence of long-range correlations within the mesoscale (~1-1000 km) of atmospheric

©2016 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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turbulence [10]. For long time scales, these fluctuations in atmospheric flows were shown to exhibit a multi-
fractal structure [11].

Variability adds a cost to renewable power [12, 13] that is absent in conventional power generation. Since an
electrical grid has no storage capacity, the production and consumer demand must be balanced in real time at
every instant. The grid operator purchases energy units from the producer®, in an energy market, from a few days
to a few milliseconds in advance of delivery. With conventional energy, the grid operator must estimate in
advance the consumer demand (scheduling), the estimation of which may not be trivial, and additional energy
units required on standby (operating reserves). In the case of renewable energy, the operator must additionally
account for both variability (fluctuations) and forecast uncertainty (error) at the production end, calling for
uncertainty management [14] in scheduling. Furthermore, large ramps in power fluctuations, in the case of
renewable energy, present the possibility of grid destabilization [15] and blackout, a constant source of concern
for grid operators [5, 16]. This risk further increases the cost of the operating reserves [ 17] needed on standby to
prevent grid failure [18]. Naturally, forecast models constitute essential tools in estimating the magnitude of
fluctuations beforehand and in planning for the optimal operating reserves required on call. Yet, no standards
for forecast accuracy currently exist [19].

The performance of a model is often quantified by the mean and variance of the error (deviation of the
prediction from the measured value). Extant works on wind power forecast error, ranging from the turbine to
the grid scale, have focused on modeling the forecast error distribution [20-25]. Since a probability distribution
is time-independent, it contains no information on temporal error variations. Several studies have considered
the dependence of the mean and variance of the error on the duration for which the power is predicted (ranging
from minutes to hours) [26, 27]. Other works have considered the different distributions of errors for mean
power over different durations’ [22, 23]. However, none of these studies account for the fluctuation correlations
of the atmospheric turbulence [28] transferred to the generated power in the analysis of forecast error or for the
temporal correlations in the fluctuations and errors themselves. Here, we suggest that the performance of wind
power forecast models (as well as the performance of any model for non-stationary processes) should also
account for the quality of the prediction against temporal correlations.

To analyze temporal correlations in grid-scale fluctuations for wind power, we draw upon the Statistical
Theory of Hydrodynamic Turbulence to quantify two types of forecast error. The first is a timescale error (e;)
that quantifies the timescales over which the forecast models fail to predict high frequency power fluctuations.
This timescale error sets a bound on the numerical resolution of forecast models and would already be known to
producers who own the farms and run the forecast models. However, model details are usually not available to
grid operators (see footnote 1, [29]) who manage the supply side uncertainty [ 14]. The second type of error we
quantify is a scaling error (e¢) that establishes a difference in the self-similar scaling of fluctuations as observed
for actual generated power vis a vis the power that was forecast to be generated. This error could be potentially
useful to model developers, and if such an error results from large-scale correlations in atmospheric turbulence,
incorporating these correlations into models is not subject to limitations arising from numerical resolution.
Having established the errors, we employ a simple memory kernel upon the forecast time series and show that
the errors are easily reduced with a minimal computational cost.

Two raw time series are provided by EIRGRID: the wind power generated nationwide across all Ireland
entering the grid py(t), and the power forecast by EIRGRID’s models p¢(t) for the same period. The forecast is
provided for 24 h at a time (implying different lead times for different times in the forecast series) and is based on
amulti-scheme ensemble of regional weather forecast models [30, 31]. The time series sampled at 15 min
intervals span a five-year period (2009-2014). As we discuss in the following, we observed no change in the
forecast accuracy during this five-year period. Given that most spot markets® do not trade at time scales shorter
than 15 min [32], our analysis finds potential applicability in these markets, as well as in managing uncertainty
over a future horizon of several hours up to a day to improve forecast models.

Raw time series for the generated power p,(%), forecast power pg(t), and their instantaneous difference
p(t) = pp(t) — by (t), which we define as the instantaneous forecast error, are shown in figure 1(a) fora 10 d
period, permitting a few immediate qualitative observations. Firstly, p,(f) exhibits correlated fluctuations.
Secondly, p¢(¢) while closely following p(t), misses the high frequency (relative to the sampling rate of the time
series) components. The instantaneous forecast error Py(t) exhibits correlated fluctuations and its kurtosis
k= /ot~ 58, = (py — P 0> = (p; — By)? and Py represents the time average of the instantaneous
error), implying a broader than Gaussian distribution (x = 3 for a Gaussian distribution) of the instantaneous
error as is evident from figure 1(b).

*For Ireland, EIRGRID is both the producer and distributor of wind power.

Note that [22] suggests the Cauchy distribution for the errors. However, this distribution is not suitable because all its moments are
undefined [47].

® This does not apply for Ireland since its grid is isolated from mainland Europe.
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Figure 1. (a) Raw time series (for 10 d) of the generated power py(#) (black empty circles), forecast power p¢(f) (red empty squares),
and the instantaneous forecast error pq(f) (blue empty triangles) in megawatts (MW). Every third data point is plotted for easy
visibility. (b) The probability density function of the raw instantaneous forecast error II(p;) (black full circles) has exponentially
decaying tails that are broad relative to a Gaussian distribution (solid black line) of the same mean and standard deviation as II(p;).
The Gaussian distribution is vertically shifted for easy comparison.

2. Data analysis

The time series were analyzed in two stages, with trends in the series being identified in the first stage, followed by
an analysis of the fluctuations around the trends in the second stage. Trend removal permits a focus on
systematic differences between py(f) and p¢(f) ignoring differences due to new wind farms and the seasonal
variability of the wind power. The trend identification employed here is based on a fast Fourier transform (FFT)
analysis of the time series. FFTs of the generated and forecast power time series were obtained, and the
frequencies were ranked by their amplitudes (large to small, for each series separately). New time series were
obtained by inverting the FFTs, keeping only the first 1 frequencies (those with the largest amplitudes) and
setting the amplitudes of all other frequencies to zero (the amplitudes of the zero frequency components were
unchanged in order to preserve the signal mean in the trends). The trends were defined as the time series
(obtained by the procedure described above) such that the cross-correlation between the series obtained from
the generated and forecast power is maximal. Keeping the original amplitudes of the zero frequency (to preserve
the signal mean) and five more frequencies resulted in a peak cross-correlation of 0.9904 between the generated
and forecast power trends (figure 2(a)). These respective trends were subtracted from the raw time series. We
denote the detrended generated power by P(#), forecast power by Pr(t) and their instantaneous difference by
Pp(t) = Pe(t) — P5(t). The frequencies with the maximal amplitudes that were used in the trends correspond
to periods 0f 231-1389 d, implying that the high frequency fluctuations were not affected by our detrending
procedure. We emphasize that within the aforementioned protocol, the diurnal oscillation frequency was not
explicitly removed from the time series (we elaborate on this point in section 5.).

The characteristic fluctuation timescales for the detrended time series were first computed from their
respective autocorrelation functions defined as:

_ (Px(®) — PO)(Px(t+ 1) — Px)
(Px (1) — Px)’

where Py is a time-average subtracted from the signal (our detrending renders a zero signal mean since the zero
frequency component was preserved in the trend and removed from the detrended series). The subscript X
should be replaced with G for generated power, F for forecast power, and D for instantaneous forecast error,
respectively. The three autocorrelation functions (figure 2(b)) exhibit exponential decay for short times with a
data fit following the functional form Cx (1) ~ Axe™ /™), where Ax =~ 1.0, owingto Cx(7) being
normalized, and 7x represents the characteristic decorrelation time for each time series, yielding 7 = 80.94
data points (~20.24 h) for generated power, 7= = 81 points (also ~20.24 h) for forecast power, and 7, = 25.86
points (~6.5 h) for instantaneous forecast error. Different detrending schemes, i.e., using different numbers of
frequencies in the trend (the parameter m defined above), resulted in decorrelation times in the range of
19.5-28 h. However, we found that for all the values of m that we tested, 7+ =~ 7 and the same trend of a shorter
decorrelation time for larger m was found in both the detrended generated and the forecast power. This trend is

Cx (1) (eY)
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Figure 2. (a) The five-year trends for p(f) (solid blackline)and P¢(#) (dashed redline) are subtracted from the raw time series in
subsequent analysis. (b) Log-linear scale: autocorrelation functions Cg(7) (empty blackcircles), Cg(7) (empty red squares) and
Cp () (empty blue triangles) for Py(#), Pe(t) and Pp(%), respectively, exhibit exponential decorrelation with respective characteristic
timescales obtained from the fit to data of 7z = 80.94 points (20.24 h), 7+ = 81 points (20.24 h) and 7, = 25.86 points (~6.5 h).
Every third data point is plotted for easy visibility.

expected because the larger the m, the larger the deterministic fraction of the signal that is removed in the
detrending procedure. The shortest decorrelation time reflects the inherent nature of the fluctuations. The
detrended series were also split into independent time series of shorter duration (1/8th of the original temporal
duration). Autocorrelation functions computed for these windowed data did not reveal a measurable difference
in the characteristic decay time 7x; deviations were apparent only for long-term behavior, spanning a week (or
longer timescales), when the decorrelation had already occurred. The correlation time of high frequency
fluctuations (<20 h) is much shorter than the slow varying trend (over months to years). Hence the detrending
protocol (in particular, the number of maximal amplitudes) does not influence the analysis to follow-a fact
verified and reported upon later. Analysis of the instantaneous forecast error Pp(?) for the eight independent
time series of shorter duration did not reveal a measurable change in the fluctuations (mean and standard
deviation), suggesting that the forecast accuracy remained the same over the considered five-year period.

Autocorrelation functions for the generated ( Cg (7) ) and forecast ( Cg (7) ) power exhibit nearly identical
scaling and the same characteristic decay timescales (7g = 7z = 20.24 h), suggesting the accurate capture of
correlations in generated power by the forecast models. Yet, the autocorrelation function Cp(7) for
instantaneous forecast error Pp(#) informs us that some correlations are not captured. In particular, we
qualitatively know that Pg(#) misses the high frequency components of Pg(t), and theyend up in Pp(t), thereby
contributing to its two-point correlator. This correlation deficit suggests that the higher order moments of the
two-point correlator are necessary to capture the statistical structure of the missing fluctuations.

3. Temporal structure functions

Statistical analysis of higher order correlations is a well-developed, mature tool within the statistical theory of
hydrodynamic turbulence in which higher order two-point correlators are studied through structure functions.
Kolmogorov’s theory of 1941 (K41) [33] lays the foundation for structure functions through the celebrated 4 /5
law’: S3(r) = ((Av(n))*) = (R + 1) — v(R))’) = — %Er, where the third moment of longitudinal
velocity differences (((Av) (r))®)) between two points spatially separated by a longitudinal distance ris
proportional to the product of the average turbulent dissipation rate () and the longitudinal spacing r [34].
The nth order structure function encodes all cross-terms up to order 1 of the two-point correlator for a given
stationary signal. The physical relevance of structure functions may be appreciated by considering a stationary,
fluctuating signal x(f) with a zero mean. The difference between two values of this signal taken time T apart
(Ax(7) = x(t + ) — x(t))is collected at various windows (of duration 7) along the time series. Ax (7) is
therefore a random variable with statistics of its own, and the nth order structure function, defined as
S (1) = {(Ax(7))"), is the nth moment for its probability density function (PDF) IT(Ax (7)). The moment

4
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Figure 3. Structure functions of order n = 1-10 (solid red circles) and their power-law fits (solid black lines) for (a) generated power
SS(7) and (b) forecast power SF(r) plotted versus 7 inlog-log scale exhibiting self-similar scaling SX (1) o 7% (Xis G for
generated and F for forecast power). The scaling is robust for (a) the generated power over 1.4 decades (40 time steps). (b) In contrast,
for forecast power, the first- and second-order structure functions exhibit scalingup to 7 = 40 time steps, but for n > 2, no scaling is
observed for 7 < 10 time steps. Self-similar scaling is restored over a limited range of timescales 10 < 7 < 40.

S, (7) varies with the time difference 7 between signals, and its scaling, if any, reveals temporal variations in the
statistical structure of the fluctuations of the signal to the nth order.

Tails of the PDF IT1(Ax (7)) exert themselves with increasing order n of the structure function, thus
necessitating more data to resolve higher order structure functions. A weak test for resolving the nth order
structure function involves splitting the time series into smaller windows and testing for identical scaling on the
truncated series. However, this test only ensures the stationarity of the statistics. A strong test for the ability to
resolve the nth order structure function requires that first, the moment’s integrand (Ax)"II(Ax) — 0 as
|Ax| — oo [35] (required due to the finiteness of the data), and second, the PDF IT(Ax) should decay faster
than 1/|Ax|"*! for |Ax| — oo or else the integral f (Ax)"TI(Ax) dx would diverge for large | Ax| [36] (test for
the existence of a PDF’s nth moment). Whereas the two conditions are not independent, the second condition is
theoretical and does not depend upon the available statistics. When conducting data analysis, even when the
second condition is satisfied, insufficient data can lead to noise and prevent the integrand (Ax)"TI(Ax) from
satisfactorily converging to zero [37]. The first condition is, therefore, dependent on the finiteness of the data.
Based on both weak and strong tests, we conclude that the EIRGRID data can resolve structure functions up to
order n = 12;however, we only present resultsup ton = 10. For n > 10, tails of the integrand (Ax)"I1(Ax)
become noisy. Despite the convergence of the integral, the noise amplitude begins to compromise the quality of
the structure functions (e.g. please see figure 4 in [38] and related discussion therein) as can be observed in
figure 3(a) forn = 10.

Since even-order structure functions take only positive values, they converge faster than ones with odd
order. To overcome this distinction between odd and even orders, we compute the nth order structure function
of the absolute value of differences: SX (1) = (|Px(t + 7) — Px (¢)|"), where subtraction of mean Px (f + 7)
and Py (t) is assumed. While ensuring the same convergence rate for even- and odd-order statistics, it also
collates all data in the positive quadrant, permitting easy visualization.

4. Results

Figure 3 plots the structure functions of order n = 1-10 for the absolute value of the signal differences of the
generated power |A (Pg (7)) (figure 3(a)) and the forecast power |A (Pg(7))| (figure 3(b)). Self-similar or
power-law scaling is observed for the generated power structure functions over 1.4 decades spanning 7 < 40.
Scaling over the same temporal range is also observed for the forecast power structure functions of order n = 1
and 2. For n > 2, no scalingis observed for timescales 7 < 10. The scaling is restored over a limited range of
timescales 10 < 7 < 40 (0.4 decades in time).
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with scaling restored for 10 < 7 < 40. Solid black lines are power-law fits to data within the scaling regime. (b) Scaling exponent ¢*
versus the order of structure function # for generated G (solid red circles), forecast F (solid blue squares) and modified forecast M
(solid black triangles) structure functions, and cross-structure functions FG (solid green inverted triangles), and their respective
second-order polynomial fits: solid red line for ¢ f, small dashed blue line for Cﬁ, long dashed black line for Cf"[ and medium dashed
green line for ¢ EG.

Self-similar scaling of the temporal structure functions implies a relationship of the form:
SX(1) oc AXTG, )

where C:f is the scaling exponent. For simple mono-fractal scaling, Cff o n. However, fluctuations with a multi-
fractal character exhibit a nonlinear dependence of the scaling exponent Cff with respect to n. Super- (sub-)
linear variation of Cff versus # implies the temporal expansion (compression) of fluctuations [39]. Scaling

X
d log(S; (1)) , which
d log(T) x
provides a more reliable estimate of the exponent than a power-law fit [40, 41]. The pre-factor A;, in equation 2 is

subsequently obtained from a fit to the data. In figure 3, all the data (solid red circles) were divided by A;) such
that all fits (solid black lines) commence from both mantissa () and ordinate (S,X (7)) at unity, for an easy
comparison of Ci( with order n. All the data in figures 3, 4(a) and 5(b), therefore, follow the scaling relation:
S,f( (1) % (A,f( =1).

The scaling in figure 3 reveals higher order temporal correlations at work in the EIRGRID data. The absence
of scaling for S} (7) for n > 2 attimescales 7 < 10 confirms the qualitative observation made in figure 1(a) that
forecast models do not capture high frequency fluctuations. More importantly, figure 3(b) ascribes a precise
bound on the time (7 = 10, 2.5 h) up to which the high frequency fluctuations are missed. Finally, the scaling
presencefor S} (1), n = 1, 2explains the close agreement between the autocorrelation functions Cg (7)
and Cg(7) and their identical characteristic decay times, 7 and 7, observed in figure 2(b). This is to be
expected on the grounds that the second-order structure function S, (1) =
((Ax(T))?) = (x(t + 7)) + (x(#)?) — 2(x(t)x(¢t + 7)) sharesadirect correspondence with the
autocorrelation function where the cross-term is identical to the numerator of equation 1. The failure of S (1)
for n > 2 to capture high frequency fluctuations out to 7 = 10 reveals one type of forecast error in the models;
we call this the timescale error e.

Before proceeding to the second type of error arising from the scaling mismatch, we define the cross-
structure function XnF S(r) = (IPe(t + 1) — P (@) ["). X,,F S(r) represents nth order moments for the PDF of
the relative magnitude of fluctuations between Pg(#) and Py (¢ + 7), and their cross-terms correspond to
higher order two-point cross-correlators between the generated and forecast power. This function is plotted in
figure 4(a). Again, we notice that scaling is absent at early times (7 < 10), and restored at later times
(10 < 7 < 40). We note that X F¢ () exhibits no scaling for n = 1 and 2, unlike the forecast structure functions
(figure 3(b)). Although S’ () exhibits scaling for order # = 1and 2, its exponent (: = ( S; this scaling deficit is
reflected in X} S(r)forn =1 and?2.

The absence of scaling at short timescales (7 < 10 time steps) in SnF () fororder n > 2 (figure 3(b)) and
XF G (1) for all orders n (figure 4(a)) could potentially arise from one of two very different mechanisms. If a day-

exponents for all the structure functions were computed from the log derivative, Cff =

6
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ahead forecast is regularly corrected at short timescales, one expects it will cause short timescale discontinuities
in the forecast signal. Owing to these discontinuities, one cannot expect S} (1) — 0as 7 — 0, especially for
higher order structure functions (large #). EIRGRID generates a day-ahead forecast every calendar day at 00:00
Irish Standard Time (IST) for the next 24 h [30, 31]. A time derivative of the raw (non-detrended) forecast time
% S:t) shows discontinuities only at 24 h intervals (00:00 IST of every calendar day). No short time
discontinuities (up to within the sampling interval) were observed. One therefore infers either that EIRGRID
does not employ short time corrections or that any such corrections do not exhibit discontinuities in the signal.

Consequently, we conclude that short timescale discontinuities make no contribution to higher order structure

series

functions. We, therefore, trace the absence of scaling for 7 < 10 time steps to the second possibility. It must
arise from the temporal resolution limitations of the EIRGRID models, including the fact that the boundary
conditions for the regional model are only updated every six hours, hence our qualification of this error asa

timescale error e,

5. Discussion

Having established the various structure functions, we now consider the behavior of their scaling exponents (’)f
(X = G for generated, F for forecast and FG for the cross-structure function). Figure 4(b) plots C? versus the
order n together with their polynomial fits to the quadratic order. (¥ = 1072 + 0.67n — 0.013n? scales almost
linearly (mono-fractal) with a small, but measurable, quadratic deviation towards multi-fractal behavior. The
exponent {ﬁ = 0.007 + 0.8# — 0.025#12 exhibits a slightly more pronounced quadratic deviation (multi-fractal
behavior) relative to ¢ S On the other hand, Ci G = 1072 + 0.54n — 0.006n2 scales almost linearly with 1,
implying mono-fractal scaling.

We now consider the measurement error for the aforementioned scalings. First, given that all detrending
protocols suffer from the ad hoc choice of a detrending timescale, we tested the scalings for dependence on the
detrending procedure by varying the number of maximal amplitudes. Ignoring the condition for maximal cross-
correlation between p,(t) and py(t), the number of maximal amplitudes contributing to the trends was varied.
The scalings were invariant up to the inclusion of 15 maximal amplitudes into the trend, beyond which
coefficients for the polynomial fits started varying in the second decimal place.

Contrary to normal practice [19], we did not explicitly detrend the diurnal oscillation frequency as it was
found not to be relevant for our analysis. First, we focused on fluctuations for timescales less than 24 h. In
particular, we observed self-similar scaling in structure functions up to 10 h (7 = 40 time steps). Since our
analysis cannot apply beyond this timescale, diurnal oscillations do not enter into our analysis. Second, whereas
diurnal peaks are present in the autocorrelation function (figure 2(b)) for the instantaneous forecast error
(Cp (7)), we did not calculate structure functions for instantaneous forecast error (Pp(t)). Diurnal modes are
barely discernible for the autocorrelation functions of generated (Cg (7)) and forecast power (Cg (7)) whose
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structure functions we do study. Finally, as stated earlier, our detrending protocol revealed that diurnal
oscillations in the forecast and generated power are less significant than other (much slower) processes.
Having ascertained the robustness of our choice for the five maximal amplitudes at which the cross-
correlation peaks, we focused on a second source of scaling measurement error, namely statistical variability.
Since the scalings are analyzed up to 7 = 100 data points, the detrended time series were split into eight
independent windows (each with 21 912 data points), and the structure functions were recomputed for each

X
window. The variation in the log derivative ((5 = %Sg"(g))) for the eight independent measurements was

taken as the possible scatter in the scaling estimation, thereby providing a confidence interval for the polynomial
fits. The scatter was found to be Qf + 0.01in both the measured value of Cif and the corresponding polynomial
fits (for each of the polynomial coefficients) for each of the eight independent datasets, revealing that the
polynomial fits were meaningful only to the linear order for ¢ S and ¢ EG. The quadratic-order polynomial
coefficient for CE, despite being larger than the scatter of £0.01, is not useful owing to the fact that the
corresponding quadratic terms for ¢ S and ¢ ﬁG are smaller than the scatter magnitude.

Despite qualitatively observing a quadratic deviation for C:f in figure 4(b), our inability to ascribe significance
to it arises from the fact that the multi-fractal component (deviation from linear scaling) of the scalings is
minuscule. This is significant in light of several studies that have demonstrated multi-fractal scaling for wind
power fluctuations at the turbine [2, 4] and farm scales [42]. Turbulence theory traces the source of multi-fractal
behavior to intermittent fluctuations that can arise from two sources in the atmospheric context. The first,
known as internal intermittency, occurs at the small scales of turbulent flow. These intermittent fluctuations
would be naturally reflected in the power generated at the turbine and farm scales. However, when adding
together power generated by geographically distant wind farms, internal intermittency should smooth out [7]
since it is a small-scale effect and cannot extend across geographically distributed wind farms. Furthermore, the
sampling interval (15 min) for EIRGRID data is not expected to resolve any effects that may arise from internal
intermittency, which occur at much shorter timescales (high frequencies).

The second source of intermittency, known as external intermittency, occurs at the edge of any free-stream
[43] and arises in the atmospheric context due to coupling between the atmospheric boundary layer turbulence
and a co-moving weather system [28]. External intermittency, which can be experienced in the form of wind
gusts, is of greater relevance in the present analysis as it can both correlate distributed farms through the weather
system and occur at timescales longer than the 15 min sampling interval for the EIRGRID data. The nearly
fractal scaling of ¢ S informs us that both internal and external intermittency are being smoothed to the point of
rendering grid-level power fluctuations almost mono-fractal.

The self-similar scaling of S© (1) over several hours does strongly point to the influence of large-scale
turbulent structures on power fluctuations at the grid level. The 20 h characteristic decorrelation time (7¢) for
generated power in figure 2(¢), if taken as the large eddy turnover time of atmospheric turbulence, also lends
credence to such an argument. Finally, independent proof in support of this argument also comes from
Katzenstein et al [7] who show that an individual wind farm exhibits f~5/3 (fbeing the frequency) scaling for the
wind power spectrum (equivalent to 72/3 scaling of the second-order structure function in the time domain).
However, as wind power from various farms is summed, the spectrum steepens (please see figure 3 in [7]). Such
spectral steepening can be clearly attributed to the smoothing of high frequency (short timescale) fluctuations
corresponding to small eddies. But the low frequency (long timescale) fluctuations corresponding to large-scale
eddies lose no power spectral density, clearly indicating the influence of large-scale turbulent structures on wind
power. These large eddies extend across great geographic distances to couple distributed wind farms. No longer
independent of each other, their fluctuations become correlated, and thus cannot smooth out when summed at
the electrical grid. This spatial coupling of wind farms via atmospheric turbulence manifests itself through
correlated fluctuations in the aggregate wind power feeding the electrical grid.

We finally consider the forecast error due to the scaling mismatch. We define the scaling error as
ec = ¢ E - S Under this definition, if the time series for forecast and generated power were identical, then
SS(r) = S¥(r), implying ¢ S’ = (!, and therefore e; = 0. Another typical case arises if forecast models fail
completely, resulting in a flat time series with no fluctuations, {f = 0, resultinginan error e = —¢ G, Using
the polynomial fits for Cff (see figure 4(b)) to the linear order, we obtain e; =
(7 x 1072 + 0.8n) — (1072 4 0.67n) = —0.003 + 0.13n. This can be cross-validated against the
difference (f — CEG = (1072 + 0.67n) — (1072 + 0.54n) = 0.13n. Since Cif — 0asn — 0,theOth order
term falling within the scatter may be taken to be zero. Both estimates of error are identical to the linear
order (e, = 0.13n).

The analysis thus far demonstrates the importance of temporal correlations in wind power and their role in
estimating forecast errors. It is reasonable to ask whether this knowledge could help in improving the forecast
time series, despite having no knowledge of the models employed. Motivated by the observation that the short-
term temporal correlations of the generated power are not well captured by the forecast, we introduce a modified
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forecast that is based on the original forecast, convoluted with an exponentially decaying memory kernel derived
t
from the generated power time series. The modified forecast power is given by Py (¢) = f Pp(1)e7¢-7dr.
0

This modified forecast imposes a short-term correlation on the original forecast; therefore, it is expected to
better capture the temporally correlated fluctuations of the generated power.

The memory duration (1,/-) was chosen so as to minimize the relative difference between the structure
functions of the generated and forecast power. As expected (as shown earlier, the low order structure functions
of the generated and forecast power are very similar), we found that the optimal y varies with the order of the
structure function. For n < 4, the memory-modified forecast shows no improvement in the agreement between
SS and SE. For n > 4, the modified forecast exhibits better agreement with the structure functions of the
generated power as shown in figure 5(b). The optimal -y (Yopt) Was foundtobe 7, ~ 1.06 and ~,, ~ 0.37,as
shown in figure 5(a), plotted in log-linear scale to show the variation in Yopt for n > 4. Thesimple scheme,
suggested here, not only tries to rectify the timescale error e, but also attempts to statistically align the temporal
correlations by improving the scaling error e;.

As is apparent from figure 5(b), the structure functions (SM (1) = (JAPy (7)|")) for modified forecast time
series are substantially improved over their unmodified counterpart (figure 3(b)). First, scalings are restored at
high frequencies (7 < 10), thus rendering the timescale error irrelevant. More importantly, the scaling itself is
improved as is evident from figure 4(b), revealing (M = 0.01 4+ 0.7n — 0.0071%. To thelinear order, the
scaling error e, = CnM —C S = 0.7n — 0.67n = 0.03n, aconsiderable improvement over the original forecast
time series. Being computationally inexpensive, and given that spinning and non-spinning reserves must act
within 10 min of failure [44], with replacement reserves acting within 20—-60 min, there are tangible benefits to
incorporating such a memory kernel into models to monitor instabilities in real-time. Furthermore, it might be
possible to improve the forecast models using different parameterizations of the regional climate models or
weather models, or other stochastic approaches such as Markov-chain-based prediction methods [45]. Itis
important to note that the improvement in the prediction does not come at the expense of an increase in the
error. We verified that for the values of v (in the memory kernel) that we used, the root mean squared error

(rmse = \/ %Zf\i ((Pr(t) — Pg(t))?) and the cross-correlation between the modified forecast and the generated
power were within 1% of those of the original forecast.

6. Summary

In summary, wind power exhibits significant temporal correlations even at the grid level, where fluctuations are
expected to average out [5] as power is fed from geographically distributed wind farms. Previous studies have
shown that the temporal correlations of the wind are essential to studying wind-generated large-scale ocean
currents [46]; a similar appreciation of large-scale correlations in atmospheric turbulence within the context of
wind power is called for. Fluctuations, albeit posing a problem to system operators, possess a statistical structure
through temporal correlations, which could be exploited to quantitatively analyze the error in forecast models.
The technique proposed here is only limited by the sampling rate of the time series. Beyond potentially serving as
astandard for quantifying wind-power forecast accuracy, it could have applications for any renewable energy
source with temporally correlated fluctuations possessing a statistical structure.
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