5,758 research outputs found

    A new method for calculating jet-like QED processes

    Full text link
    We consider inelastic QED processes, the cross sections of which do not drop with increasing energy. Such reactions have the form of two-jet processes with the exchange of a virtual photon in the t-channel. We consider them in the region of small scattering angles m/E <= theta << 1, which yield the dominant contribution to their cross sections. A new effective method is presented to calculate the corresponding helicity amplitudes. Its basic idea consists in replacing spinor structures for real and weakly virtual intermediate leptons by simple transition vertices for real leptons. The obtained compact amplitudes are particularly suitable for numerical calculations in jet-like kinematics.Comment: 6 pages, 2 figures, Contribution presented by V.G. Serbo at PHOTON 2003, Frascati, Ital

    Photon splitting in a laser field

    Full text link
    Photon splitting due to vacuum polarization in a laser field is considered. Using an operator technique, we derive the amplitudes for arbitrary strength, spectral content and polarization of the laser field. The case of a monochromatic circularly polarized laser field is studied in detail and the amplitudes are obtained as three-fold integrals. The asymptotic behavior of the amplitudes for various limits of interest are investigated also in the case of a linearly polarized laser field. Using the obtained results, the possibility of experimental observation of the process is discussed.Comment: 31 pages, 4 figure

    O fim do subsídio do trigo e a utilização de farinhas mistas.

    Get PDF
    bitstream/item/119471/1/FOL-04309.pdfTrabalho apresentado na I Jornada Estadual de Tecnologia de Alimentos e Nutrição Humana, Passo Fundo, 1988

    Fractional Energy Loss and Centrality Scaling

    Full text link
    The phenomenon of centrality scaling in the high-\pt spectra of π0\pi^0 produced in Au-Au collisions at s=200\sqrt s=200 GeV is examined in the framework of relating fractional energy loss to fractional centrality increase. A new scaling behavior is found where the scaling variable is given a power-law dependence on NpartN_{\rm part}. The exponent γ\gamma specifies the fractional proportionality relationship between energy loss and centrality, and is a phenomenologically determined number that characterizes the nuclear suppression effect. The implication on the parton energy loss in the context of recombination is discussed.Comment: 4 pages in RevTe

    Partonic Energy Loss and the Drell-Yan Process

    Full text link
    We examine the current status of the extraction of the rate of partonic energy loss in nuclei from A dependent data. The advantages and difficulties of using the Drell-Yan process to measure the energy loss of a parton traversing a cold nuclear medium are discussed. The prospects of using relatively low energy proton beams for a definitive measurement of partonic energy loss are presented.Comment: 12 pages, 2 figure

    Maximizing the Conditional Expected Reward for Reaching the Goal

    Full text link
    The paper addresses the problem of computing maximal conditional expected accumulated rewards until reaching a target state (briefly called maximal conditional expectations) in finite-state Markov decision processes where the condition is given as a reachability constraint. Conditional expectations of this type can, e.g., stand for the maximal expected termination time of probabilistic programs with non-determinism, under the condition that the program eventually terminates, or for the worst-case expected penalty to be paid, assuming that at least three deadlines are missed. The main results of the paper are (i) a polynomial-time algorithm to check the finiteness of maximal conditional expectations, (ii) PSPACE-completeness for the threshold problem in acyclic Markov decision processes where the task is to check whether the maximal conditional expectation exceeds a given threshold, (iii) a pseudo-polynomial-time algorithm for the threshold problem in the general (cyclic) case, and (iv) an exponential-time algorithm for computing the maximal conditional expectation and an optimal scheduler.Comment: 103 pages, extended version with appendices of a paper accepted at TACAS 201

    Anisotropic Flow and Viscous Hydrodynamics

    Full text link
    We report part of our recent work on viscous hydrodynamics with consistent phase space distribution f(x,\p) for freeze out. We develop the gradient expansion formalism based on kinetic theory, and with the constraints from the comparison between hydrodynamics and kinetic theory, viscous corrections to f(x,\p) can be consistently determined order by order. Then with the obtained f(x,\p), second order viscous hydrodynamical calculations are carried out for elliptic flow v2v_2.Comment: 8 pages, 2 figures. Proceedings for the 28th Winter Workshop on Nuclear Dynamics, Dorado Del Mar, Puerto Rico, United States Of America, 7 - 14 Apr 201

    On finitely ambiguous B\"uchi automata

    Full text link
    Unambiguous B\"uchi automata, i.e. B\"uchi automata allowing only one accepting run per word, are a useful restriction of B\"uchi automata that is well-suited for probabilistic model-checking. In this paper we propose a more permissive variant, namely finitely ambiguous B\"uchi automata, a generalisation where each word has at most kk accepting runs, for some fixed kk. We adapt existing notions and results concerning finite and bounded ambiguity of finite automata to the setting of ω\omega-languages and present a translation from arbitrary nondeterministic B\"uchi automata with nn states to finitely ambiguous automata with at most 3n3^n states and at most nn accepting runs per word

    Thermalization of gluon matter including gg<->ggg interactions

    Get PDF
    Within a pQCD inspired kinetic parton cascade we simulate the space time evolution of gluons which are produced initially in a heavy ion collision at RHIC energy. The inelastic gluonic interactions ggggggg \leftrightarrow ggg do play an important role: For various initial conditions it is found that thermalization and the close to ideal fluid dynamical behaviour sets in at very early times. Special emphasis is put on color glass condensate initial conditions and the `bottom up thermalization' scenario. Off-equilibrium 323\to 2 processes make up the very beginning of the evolution leading to an initial decrease in gluon number and a temporary avalanche of the gluon momentum distribution to higher transversal momenta.Comment: 6 pages, 8 figures, Talk given at International Conference on Strong and Electroweak Matter (SEWM 2006), BNL, New York, May 200

    A Component-oriented Framework for Autonomous Agents

    Get PDF
    The design of a complex system warrants a compositional methodology, i.e., composing simple components to obtain a larger system that exhibits their collective behavior in a meaningful way. We propose an automaton-based paradigm for compositional design of such systems where an action is accompanied by one or more preferences. At run-time, these preferences provide a natural fallback mechanism for the component, while at design-time they can be used to reason about the behavior of the component in an uncertain physical world. Using structures that tell us how to compose preferences and actions, we can compose formal representations of individual components or agents to obtain a representation of the composed system. We extend Linear Temporal Logic with two unary connectives that reflect the compositional structure of the actions, and show how it can be used to diagnose undesired behavior by tracing the falsification of a specification back to one or more culpable components
    corecore