27 research outputs found
Establishment, Impacts, and Current Range of Spotted Knapweed (\u3ci\u3eCentaurea Stoebe\u3c/i\u3e Ssp. \u3ci\u3eMicranthos\u3c/i\u3e) Biological Control Insects in Michigan
Centaurea stoebe L. ssp. micranthos (Gugler) Hayek (spotted knapweed) is an invasive plant that has been the target of classical biological control in North America for more than four decades. Work in the western U.S. and Canada has shown the seedhead-feeding weevils Larinus minutus Gyllenhal and Larinus obtusus Gyllenhal (Coleoptera: Curculionidae) and the root-boring weevil Cyphocleonus achates (Fahraeus) (Coleoptera: Curculionidae) to be the most effective C. stoebe control agents. These three weevils have recently been introduced into the eastern U.S., including sites in Michigan in 2007 and 2009. In 2010, we made additional releases at six sites in Michigan, monitoring them for three years 2011-13. Here we report on the establishment, impact, and cur- rent range of L. minutus, L. obtusus, and C. achates in Michigan. We also report on the initial results of native plant overseeding treatments that were applied to biological control release sites with the aim of supplementing the nectar source C. stoebe provides. We found that L. minutus has established at all of its Michigan release sites and is widespread in the southwestern part of the state, while L. obtusus has established at the single site where it was released in 2007 and is spreading to adjoining counties. We also found C. achates to be present at four sites and established at one additional site in Michigan, but in all cases abundances are low and dispersal has been minimal (\u3c 10 m). In the three years following the 2010 releases, we found no measurable impacts of these biological control agents on C. stoebe growth, demographics, or plant community metrics. We also found little evidence of native flowering plant establishment at seeded sites. These baseline data will be useful in monitoring the spread and potential impacts of biological control agents on C. stoebe in Michigan
Demonstration of an Integrated Pest Management Program for Wheat in Tajikistan
Citation: Landis, D. A., Saidov, N., Jaliov, A., El Bouhssini, M., Kennelly, M., Bahlai, C., . . . Maredia, K. (2016). Demonstration of an Integrated Pest Management Program for Wheat in Tajikistan. Journal of Integrated Pest Management, 7(1), 9. doi:10.1093/jipm/pmw010Citation: Landis, D., Saidav, N., . . . & Maredia, K. (2016). Demonstration of an Integrated Pest Management
Program for Wheat in Tajikistan. Journal of Integrated Pest Management, 7(1), 1-9.
https://doi.org/10.1093/jipm/pmw010Wheat is an important food security crop in central Asia but frequently suffers severe damage and yield losses from insect pests, pathogens, and weeds. With funding from the United States Agency for International Development, a team of scientists from three U.S. land-grant universities in collaboration with the International Center for Agricultural Research in Dry Areas and local institutions implemented an integrated pest management (IPM) demonstration program in three regions of Tajikistan from 2011 to 2014. An IPM package was developed and demonstrated in farmer fields using a combination of crop and pest management techniques including cultural practices, host plant resistance, biological control, and chemical approaches. The results from four years of demonstration/research indicated that the IPM package plots almost universally had lower pest abundance and damage and higher yields and were more profitable than the farmer practice plots. Wheat stripe rust infestation ranged from 30% to over 80% in farmer practice plots, while generally remaining below 10% in the IPM package plots. Overall yield varied among sites and years but was always at least 30% to as much as 69% greater in IPM package plots. More than 1,500 local farmers-40% women-were trained through farmer field schools and field days held at the IPM demonstration sites. In addition, students from local agricultural universities participated in on-site data collection. The IPM information generated by the project was widely disseminated to stakeholders through peer-reviewed scientific publications, bulletins and pamphlets in local languages, and via Tajik national television
Assessing the ecological risk posed by a recently established invasive alien predator: Harmonia axyridis as a case study
Invasive alien predators are a serious threat to biodiversity worldwide. However, there is no generic method for assessing which local species are most at risk following the invasion of a new predator. The harlequin ladybird, Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae), is an alien in Europe and many other parts of the world where it affects other species of ladybirds through competition for food and intra-guild predation (IGP). Here, we describe a method developed to assess which European ladybird species are most at risk following the invasion of H. axyridis. The three components of the risk assessment are: the likelihood that the assessed native species encounters H. axyridis in the field, the hazard of competition for food, and the IGP hazard. Thirty native European ladybird species were assessed through data obtained from field observations, laboratory experiments and literature reviews. The species that are considered most at risk are found on deciduous trees, have immature stages which are highly vulnerable to IGP by H. axyridis, and are primarily aphidophagous. These species should be the focus of specific studies and possibly conservation actions. The risk assessment method proposed here could be applied to other alien predators which are considered a threat to native species through competition and predation
Priorities for synthesis research in ecology and environmental science
ACKNOWLEDGMENTS We thank the National Science Foundation grant #1940692 for financial support for this workshop, and the National Center for Ecological Analysis and Synthesis (NCEAS) and its staff for logistical support.Peer reviewedPublisher PD
Priorities for synthesis research in ecology and environmental science
ACKNOWLEDGMENTS We thank the National Science Foundation grant #1940692 for financial support for this workshop, and the National Center for Ecological Analysis and Synthesis (NCEAS) and its staff for logistical support.Peer reviewedPublisher PD
Invasion success of a widespread invasive predator may be explained by a high predatory efficacy but may be influenced by pathogen infection
Invasive alien species (IAS) can drive community change through ecological interactions. Parasites and pathogens can play an important role in community function including mitigating or enhancing IAS impacts. Despite this, the degree to which pathogen pressure influences IAS impacts remains poorly understood. We quantified the predatory behaviour of the highly invasive alien harlequin ladybird (Harmonia axyridis) and two UK native species, the 7-spot (Coccinella septempunctata) and 2-spot (Adalia bipunctata) ladybirds, using comparative functional response experiments. We investigated the impacts of pathogen infection on the predatory ability of the ladybirds by exposing individuals to Beauveria bassiana, a widespread entomopathogen. Invasive H. axyridis was a more efficient predator than both the native A. bipunctata and C. septempunctata, often having higher attack and/or lower prey handling time coefficients, whereas native A. bipunctata were the least efficient predators. These differences were found in both adult and larval life-stages. Beauveria bassiana infection significantly altered the predatory efficiency of adult and larval ladybird predators. The effects of pathogenic infection differed between species and life-stage but in many cases infection resulted in a reduced predatory ability. We suggest that the interactions between IAS and pathogens are integral to determining invasion success and impact
Invasion success of a widespread invasive predator may be explained by a high predatory efficacy but may be influenced by pathogen infection
Invasive alien species (IAS) can drive community change through ecological interactions. Parasites and pathogens can play an important role in community function including mitigating or enhancing IAS impacts. Despite this, the degree to which pathogen pressure influences IAS impacts remains poorly understood. We quantified the predatory behaviour of the highly invasive alien harlequin ladybird (Harmonia axyridis) and two UK native species, the 7-spot (Coccinella septempunctata) and 2-spot (Adalia bipunctata) ladybirds, using comparative functional response experiments. We investigated the impacts of pathogen infection on the predatory ability of the ladybirds by exposing individuals to Beauveria bassiana, a widespread entomopathogen. Invasive H. axyridis was a more efficient predator than both the native A. bipunctata and C. septempunctata, often having higher attack and/or lower prey handling time coefficients, whereas native A. bipunctata were the least efficient predators. These differences were found in both adult and larval life-stages. Beauveria bassiana infection significantly altered the predatory efficiency of adult and larval ladybird predators. The effects of pathogenic infection differed between species and life-stage but in many cases infection resulted in a reduced predatory ability. We suggest that the interactions between IAS and pathogens are integral to determining invasion success and impact
Priorities for synthesis research in ecology and environmental science
Synthesis research in ecology and environmental science improves understanding, advances theory, identifies research priorities, and supports management strategies by linking data, ideas, and tools. Accelerating environmental challenges increases the need to focus synthesis science on the most pressing questions. To leverage input from the broader research community, we convened a virtual workshop with participants from many countries and disciplines to examine how and where synthesis can address key questions and themes in ecology and environmental science in the coming decade. Seven priority research topics emerged: (1) diversity, equity, inclusion, and justice (DEIJ), (2) human and natural systems, (3) actionable and use-inspired science, (4) scale, (5) generality, (6) complexity and resilience, and (7) predictability. Additionally, two issues regarding the general practice of synthesis emerged: the need for increased participant diversity and inclusive research practices; and increased and improved data flow, access, and skill-building. These topics and practices provide a strategic vision for future synthesis in ecology and environmental science
Establishment, Impacts, and Current Range of Spotted Knapweed (\u3ci\u3eCentaurea Stoebe\u3c/i\u3e Ssp. \u3ci\u3eMicranthos\u3c/i\u3e) Biological Control Insects in Michigan
Centaurea stoebe L. ssp. micranthos (Gugler) Hayek (spotted knapweed) is an invasive plant that has been the target of classical biological control in North America for more than four decades. Work in the western U.S. and Canada has shown the seedhead-feeding weevils Larinus minutus Gyllenhal and Larinus obtusus Gyllenhal (Coleoptera: Curculionidae) and the root-boring weevil Cyphocleonus achates (Fahraeus) (Coleoptera: Curculionidae) to be the most effective C. stoebe control agents. These three weevils have recently been introduced into the eastern U.S., including sites in Michigan in 2007 and 2009. In 2010, we made additional releases at six sites in Michigan, monitoring them for three years 2011-13. Here we report on the establishment, impact, and cur- rent range of L. minutus, L. obtusus, and C. achates in Michigan. We also report on the initial results of native plant overseeding treatments that were applied to biological control release sites with the aim of supplementing the nectar source C. stoebe provides. We found that L. minutus has established at all of its Michigan release sites and is widespread in the southwestern part of the state, while L. obtusus has established at the single site where it was released in 2007 and is spreading to adjoining counties. We also found C. achates to be present at four sites and established at one additional site in Michigan, but in all cases abundances are low and dispersal has been minimal (\u3c 10 m). In the three years following the 2010 releases, we found no measurable impacts of these biological control agents on C. stoebe growth, demographics, or plant community metrics. We also found little evidence of native flowering plant establishment at seeded sites. These baseline data will be useful in monitoring the spread and potential impacts of biological control agents on C. stoebe in Michigan