24 research outputs found

    Population genetic structure of serotine bats (Eptesicus serotinus) across Europe and implications for the potential spread of bat rabies (European bat lyssavirus EBLV-1)

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.Understanding of the movements of species at multiple scales is essential to appreciate patterns of population connectivity and in some cases, the potential for pathogen transmission. The serotine bat (Eptesicus serotinus) is a common and widely distributed species in Europe where it frequently harbours European bat lyssavirus type 1 (EBLV-1), a virus causing rabies and transmissible to humans. In the United Kingdom, it is rare, with a distribution restricted to south of the country and so far the virus has never been found there. We investigated the genetic structure and gene flow of E. serotinus across the England and continental Europe. Greater genetic structuring was found in England compared with continental Europe. Nuclear data suggest a single population on the continent, although further work with more intensive sampling is required to confirm this, while mitochondrial sequences indicate an east-west substructure. In contrast, three distinct populations were found in England using microsatellite markers, and mitochondrial diversity was very low. Evidence of nuclear admixture indicated strong male-mediated gene flow among populations. Differences in connectivity could contribute to the high viral prevalence on the continent in contrast with the United Kingdom. Although the English Channel was previously thought to restrict gene flow, our data indicate relatively frequent movement from the continent to England highlighting the potential for movement of EBLV-1 into the United Kingdom.We acknowledge DEFRA and University of Exeter for funding this stud

    Association of insularity and body condition to cloacal bacteria prevalence in a small shorebird

    Get PDF
    Do islands harbour less diverse disease communities than mainland? The island biogeography theory predicts more diverse communities on mainland than on islands due to more niches, more diverse habitats and availability of greater range of hosts. We compared bacteria prevalences ofCampylobacter,ChlamydiaandSalmonellain cloacal samples of a small shorebird, the Kentish plover (Charadrius alexandrinus) between two island populations of Macaronesia and two mainland locations in the Iberian Peninsula. Bacteria were found in all populations but, contrary to the expectations, prevalences did not differ between islands and mainland. Females had higher prevalences than males forSalmonellaand when three bacteria genera were pooled together. Bacteria infection was unrelated to bird's body condition but females from mainland were heavier than males and birds from mainland were heavier than those from islands. Abiotic variables consistent throughout breeding sites, like high salinity that is known to inhibit bacteria growth, could explain the lack of differences in the bacteria prevalence between areas. We argue about the possible drivers and implications of sex differences in bacteria prevalence in Kentish plovers

    Adverse Outcome Pathway and Risks of Anticoagulant Rodenticides to Predatory Wildlife

    Full text link

    Population genetic structure of the red fox (Vulpes vulpes) in the UK

    Full text link
    The red fox (Vulpes vulpes) is common and widely distributed within the UK. It is a carrier or potential carrier of numerous zoonotic diseases. Despite this, there are no published reports on the population genetics of foxes in Britain. In this study, we aim to provide an insight into recent historical movement of foxes within Britain, as well as a current assessment of the genetic diversity and gene flow within British populations. We used 14 microsatellite markers to analyse 501 red fox samples originating from England, southern Scotland and northern France. High genetic diversity was evident within the sample set as a whole and limited population genetic structure was present in British samples analysed. Notably, STRUCTURE analysis found support of four population clusters, one of which grouped two southern England sampling areas with the nearby French samples from Calais, indicating recent (post-formation of the Channel) mixing of British and French populations. This may coincide with reports of large-scale translocations of foxes into Britain during the nineteenth century for sport hunting. Other STRUCTURE populations may be related to geographic features or to cultural practices such as fox hunting. In addition, the two British urban populations analysed showed some degree of differentiation from their local rural counterparts

    Population genetic structure of the Daubenton\u27s bat (Myotis daubentonii) in western Europe and the associated occurrence of rabies

    Full text link
    The Daubenton\u27s bat is widespread and common in the UK and countries bordering the English Channel and North Sea. European bat lyssavirus 2 (EBLV-2), a rabies virus, has been detected in Daubenton\u27s bats in the UK and continental Europe. Investigating the relatedness of colonies and gene flow between these regions would allow regional estimates of the movement of Daubenton\u27s bats and thus the potential for disease transmission. The genetic structure of the Daubenton\u27s bat in western Europe was investigated by analysing variability at eight microsatellite loci. Genetic diversity was found to be high at all sites (HE = 0.73-0.84), with little differentiation between bats sampled in the UK and continental Europe. Mantel tests indicated a significant correlation between geographic distance and pair-wise FST (P = 0.000), between colonies sampled in Scotland and northern England. However, this was not continuous throughout the sampled range, with evidence of panmixia within the area sampled in continental Europe. Assignment tests show no evidence that the (potential) EBLV-2 sero-positive and virus positive bats were more likely to have originated from the continental rather than UK populations. There is no sufficient significant genetic differentiation amongst most UK and continental colonies to conclude that EBLV-2 is maintained in the UK by immigration. Results show that it is likely to be maintained at a low endemic level within the UK. The relative genetic uniformity of UK and continental populations implies that there is no migration barrier to EBLV-2, between these regions

    Bat population genetics and Lyssavirus presence in Great Britain

    Full text link
    Most lyssaviruses appear to have bat species as reservoir hosts. In Europe, of around 800 reported cases in bats, most were of European bat lyssavirus type 1 (EBLV-1) in Eptesicus serotinus (where the bat species was identified). About 20 cases of EBLV-2 were recorded, and these were in Myotis daubentonii and M. dasycneme. Through a passive surveillance scheme, Britain reports about one case a year of EBLV-2, but no cases of the more prevalent EBLV-1. An analysis of E. serotinus and M. daubentonii bat genetics in Britain reveals more structure in the former population than in the latter. Here we briefly review these differences, ask if this correlates with dispersal and movement patterns and use the results to suggest an hypothesis that EBLV-2 is more common than EBLV-1 in the UK, as genetic data suggest greater movement and regular immigration from Europe of M. daubentonii. We further suggest that this genetic approach is useful to anticipate the spread of exotic diseases in bats in any region of the world
    corecore