150 research outputs found

    Numerical simulations challenged on the prediction of massive subhalo abundance in galaxy clusters: the case of Abell 2142

    Get PDF
    In this Letter we compare the abundance of member galaxies of a rich, nearby (z=0.09z=0.09) galaxy cluster, Abell 2142, with that of halos of comparable virial mass extracted from sets of state-of-the-art numerical simulations, both collisionless at different resolutions and with the inclusion of baryonic physics in the form of cooling, star formation, and feedback by active galactic nuclei. We also use two semi-analytical models to account for the presence of orphan galaxies. The photometric and spectroscopic information, taken from the Sloan Digital Sky Survey Data Release 12 (SDSS DR12) database, allows us to estimate the stellar velocity dispersion of member galaxies of Abell 2142. This quantity is used as proxy for the total mass of secure cluster members and is properly compared with that of subhalos in simulations. We find that simulated halos have a statistically significant (7\gtrsim 7 sigma confidence level) smaller amount of massive (circular velocity above 200kms1200\,{\rm km\, s^{-1}}) subhalos, even before accounting for the possible incompleteness of observations. These results corroborate the findings from a recent strong lensing study of the Hubble Frontier Fields galaxy cluster MACS J0416 \citep{grillo2015} and suggest that the observed difference is already present at the level of dark matter (DM) subhalos and is not solved by introducing baryonic physics. A deeper understanding of this discrepancy between observations and simulations will provide valuable insights into the impact of the physical properties of DM particles and the effect of baryons on the formation and evolution of cosmological structures.Comment: 8 pages, 2 figures. Modified to match the version published in ApJ

    Polymer physics of chromosome large-scale 3D organisation

    No full text
    Chromosomes have a complex architecture in the cell nucleus, which serves vital functional purposes, yet its structure and folding mechanisms remain still incompletely understood. Here we show that genome-wide chromatin architecture data, as mapped by Hi-C methods across mammalian cell types and chromosomes, are well described by classical scaling concepts of polymer physics, from the sub-Mb to chromosomal scales. Chromatin is a complex mixture of di erent regions, folded in the conformational classes predicted by polymer thermodynamics. The contact matrix of the Sox9 locus, a region linked to severe human congenital diseases, is derived with high accuracy in mESCs and its molecular determinants identi ed by the theory; Sox9 self-assembles hierarchically in higher-order domains, involving abundant many-body contacts. Our approach is also applied to the Bmp7 locus. Finally, the model predictions on the e ects of mutations on folding are tested against available data on a deletion in the Xist locus. Our results can help progressing new diagnostic tools for diseases linked to chromatin misfolding

    CLASH-VLT: Environment-driven evolution of galaxies in the z=0.209 cluster Abell 209

    Get PDF
    The analysis of galaxy properties and the relations among them and the environment, can be used to investigate the physical processes driving galaxy evolution. We study the cluster A209 by using the CLASH-VLT spectroscopic data combined with Subaru photometry, yielding to 1916 cluster members down to a stellar mass of 10^{8.6} Msun. We determine: i) the stellar mass function of star-forming and passive galaxies; ii) the intra-cluster light and its properties; iii) the orbits of low- and high-mass passive galaxies; and iv) the mass-size relation of ETGs. The stellar mass function of the star-forming galaxies does not depend on the environment, while the slope found for passive galaxies becomes flatter in the densest region. The color distribution of the intra-cluster light is consistent with the color of passive members. The analysis of the dynamical orbits shows that low-mass passive galaxies have tangential orbits, avoiding small pericenters around the BCG. The mass-size relation of low-mass passive ETGs is flatter than that of high mass galaxies, and its slope is consistent with that of field star-forming galaxies. Low-mass galaxies are also more compact within the scale radius of 0.65 Mpc. The ratio between stellar and number density profiles shows a mass segregation in the center. The comparative analysis of the stellar and total density profiles indicates that this effect is due to dynamical friction. Our results are consistent with a scenario in which the "environmental quenching" of low-mass galaxies is due to mechanisms such as harassment out to R200, starvation and ram-pressure stripping at smaller radii, as supported by the analysis of the mass function, of the dynamical orbits and of the mass-size relation of passive early-types in different regions. Our analyses support the idea that the intra-cluster light is formed through the tidal disruption of subgiant galaxies.Comment: 17 pages, 20 figures, A&A in pres

    Dissection of the collisional and collisionless mass components in a mini sample of CLASH and HFF massive galaxy clusters at z0.4z \approx 0.4

    Get PDF
    We present a multi-wavelength study of the massive (M200c1M_{200\textrm{c}} \approx 1-2×1015M2 \times 10^{15} M_\odot) galaxy clusters RXC J2248.7-4431, MACS J0416.1-2403, and MACS J1206.2-0847 at z0.4z \approx 0.4. Using the X-ray surface brightness of the clusters from deep Chandra data to model their hot gas, we are able to disentangle this mass term from the diffuse dark matter in our new strong-lensing analysis, with approximately 5050-100100 secure multiple images per cluster, effectively separating the collisional and collisionless mass components of the clusters. At a radial distance of 10%10\% of R200cR_{200\textrm{c}} (approximately 200200 kpc), we measure a projected total mass of (0.129±0.001)(0.129 \pm 0.001), (0.131±0.001)(0.131 \pm 0.001) and (0.137±0.001)×M200c(0.137 \pm 0.001)\times M_{200\textrm{c}}, for RXC J2248, MACS J0416 and MACS J1206, respectively. These values are surprisingly similar, considering the large differences in the merging configurations, and, as a consequence, in the mass models of the clusters. Interestingly, at the same radii, the hot gas over total mass fractions differ substantially, ranging from 0.082±0.0010.082 \pm 0.001 to 0.133±0.0010.133 \pm 0.001, reflecting the various dynamical states of the clusters. Moreover, we do not find a statistically significant offset between the positions of the peak of the diffuse dark matter component and of the BCG in the more complex clusters of the sample. We extend to this sample of clusters previous findings of a number of massive sub-halos higher than in numerical simulations. These results highlight the importance of a proper separation of the different mass components to study in detail the properties of dark matter in galaxy clusters.Comment: 19 pages, 11 figures, 7 tables; accepted for publication in the Astrophysical Journal; lensing models available at https://sites.google.com/site/vltclashpublic

    CLASH-VLT: Insights on the mass substructures in the Frontier Fields Cluster MACS J0416.1-2403 through accurate strong lens modeling

    Get PDF
    We present a detailed mass reconstruction and a novel study on the substructure properties in the core of the CLASH and Frontier Fields galaxy cluster MACS J0416.1-2403. We show and employ our extensive spectroscopic data set taken with the VIMOS instrument as part of our CLASH-VLT program, to confirm spectroscopically 10 strong lensing systems and to select a sample of 175 plausible cluster members to a limiting stellar mass of log(M_*/M_Sun) ~ 8.6. We reproduce the measured positions of 30 multiple images with a remarkable median offset of only 0.3" by means of a comprehensive strong lensing model comprised of 2 cluster dark-matter halos, represented by cored elliptical pseudo-isothermal mass distributions, and the cluster member components. The latter have total mass-to-light ratios increasing with the galaxy HST/WFC3 near-IR (F160W) luminosities. The measurement of the total enclosed mass within the Einstein radius is accurate to ~5%, including systematic uncertainties. We emphasize that the use of multiple-image systems with spectroscopic redshifts and knowledge of cluster membership based on extensive spectroscopic information is key to constructing robust high-resolution mass maps. We also produce magnification maps over the central area that is covered with HST observations. We investigate the galaxy contribution, both in terms of total and stellar mass, to the total mass budget of the cluster. When compared with the outcomes of cosmological NN-body simulations, our results point to a lack of massive subhalos in the inner regions of simulated clusters with total masses similar to that of MACS J0416.1-2403. Our findings of the location and shape of the cluster dark-matter halo density profiles and on the cluster substructures provide intriguing tests of the assumed collisionless, cold nature of dark matter and of the role played by baryons in the process of structure formation.Comment: 26 pages, 22 figures, 7 tables; accepted for publication in the Astrophysical Journal. A high-resolution version is available at https://sites.google.com/site/vltclashpublic/publications/Grillo_etal_2014.pd

    CLASH-VLT: A Highly Precise Strong Lensing Model of the Galaxy Cluster RXC J2248.7-4431 (Abell S1063) and Prospects for Cosmography

    Get PDF
    We perform a comprehensive study of the total mass distribution of the galaxy cluster RXCJ2248 (z=0.348z=0.348) with a set of high-precision strong lensing models, which take advantage of extensive spectroscopic information on many multiply lensed systems. In the effort to understand and quantify inherent systematics in parametric strong lensing modelling, we explore a collection of 22 models where we use different samples of multiple image families, parametrizations of the mass distribution and cosmological parameters. As input information for the strong lensing models, we use the CLASH HST imaging data and spectroscopic follow-up observations, carried out with the VIMOS and MUSE spectrographs, to identify bona-fide multiple images. A total of 16 background sources, over the redshift range 1.06.11.0-6.1, are multiply lensed into 47 images, 24 of which are spectroscopically confirmed and belong to 10 individual sources. The cluster total mass distribution and underlying cosmology in the models are optimized by matching the observed positions of the multiple images on the lens plane. We show that with a careful selection of a sample of spectroscopically confirmed multiple images, the best-fit model reproduces their observed positions with a rms of 0.30.3 in a fixed flat Λ\LambdaCDM cosmology, whereas the lack of spectroscopic information lead to biases in the values of the model parameters. Allowing cosmological parameters to vary together with the cluster parameters, we find (at 68%68\% confidence level) Ωm=0.250.16+0.13\Omega_m=0.25^{+0.13}_{-0.16} and w=1.070.42+0.16w=-1.07^{+0.16}_{-0.42} for a flat Λ\LambdaCDM model, and Ωm=0.310.13+0.12\Omega_m=0.31^{+0.12}_{-0.13} and ΩΛ=0.380.27+0.38\Omega_\Lambda=0.38^{+0.38}_{-0.27} for a universe with w=1w=-1 and free curvature. Using toy models mimicking the overall configuration of RXCJ2248, we estimate the impact of the line of sight mass structure on the positional rms to be 0.3±0.10.3\pm 0.1.(ABRIDGED)Comment: 23 pages, 13 figures, accepted for publication in A&

    CLASH-VLT: The stellar mass function and stellar mass density profile of the z=0.44 cluster of galaxies MACS J1206.2-0847

    Get PDF
    Context. The study of the galaxy stellar mass function (SMF) in relation to the galaxy environment and the stellar mass density profile, rho(r), is a powerful tool to constrain models of galaxy evolution. Aims. We determine the SMF of the z=0.44 cluster of galaxies MACS J1206.2-0847 separately for passive and star-forming (SF) galaxies, in different regions of the cluster, from the center out to approximately 2 virial radii. We also determine rho(r) to compare it to the number density and total mass density profiles. Methods. We use the dataset from the CLASH-VLT survey. Stellar masses are obtained by SED fitting on 5-band photometric data obtained at the Subaru telescope. We identify 1363 cluster members down to a stellar mass of 10^9.5 Msolar. Results. The whole cluster SMF is well fitted by a double Schechter function. The SMFs of cluster SF and passive galaxies are statistically different. The SMF of the SF cluster galaxies does not depend on the environment. The SMF of the passive population has a significantly smaller slope (in absolute value) in the innermost (<0.50 Mpc), highest density cluster region, than in more external, lower density regions. The number ratio of giant/subgiant galaxies is maximum in this innermost region and minimum in the adjacent region, but then gently increases again toward the cluster outskirts. This is also reflected in a decreasing radial trend of the average stellar mass per cluster galaxy. On the other hand, the stellar mass fraction, i.e., the ratio of stellar to total cluster mass, does not show any significant radial trend. Conclusions. Our results appear consistent with a scenario in which SF galaxies evolve into passive galaxies due to density-dependent environmental processes, and eventually get destroyed very near the cluster center to become part of a diffuse intracluster medium.Comment: A&A accepted, 15 pages, 13 figure

    CLASH-VLT: Dissecting the Frontier Fields Galaxy Cluster MACS J0416.1-2403 with 800\sim800 Spectra of Member Galaxies

    Get PDF
    We present VIMOS-VLT spectroscopy of the Frontier Fields cluster MACS~J0416.1-2403 (z=0.397). Taken as part of the CLASH-VLT survey, the large spectroscopic campaign provided more than 4000 reliable redshifts, including ~800 cluster member galaxies. The unprecedented sample of cluster members at this redshift allows us to perform a highly detailed dynamical and structural analysis of the cluster out to ~2.2r200r_{200} (~4Mpc). Our analysis of substructures reveals a complex system composed of a main massive cluster (M200M_{200}~0.9×1015M\times 10^{15} M_{\odot}) presenting two major features: i) a bimodal velocity distribution, showing two central peaks separated by ΔVrf\Delta V_{rf}~1100 km s1^{-1} with comparable galaxy content and velocity dispersion, ii) a projected elongation of the main substructures along the NE-SW direction, with a prominent subclump ~600 kpc SW of the center and an isolated BCG approximately halfway between the center and the SW clump. We also detect a low mass structure at z~0.390, ~10' S of the cluster center, projected at ~3Mpc, with a relative line-of-sight velocity of ΔVrf\Delta V_{rf}~-1700 km s1^{-1}. The cluster mass profile that we obtain through our dynamical analysis deviates significantly from the "universal" NFW, being best fit by a Softened Isothermal Sphere model instead. The mass profile measured from the galaxy dynamics is found to be in relatively good agreement with those obtained from strong and weak lensing, as well as with that from the X-rays, despite the clearly unrelaxed nature of the cluster. Our results reveal overall a complex dynamical state of this massive cluster and support the hypothesis that the two main subclusters are being observed in a pre-collisional phase, in line with recent findings from radio and deep X-ray data. With this article we also release the entire redshift catalog of 4386 sources in the field of this cluster.Comment: Accepted for publication on ApJS. Revised to match the accepted version; 21 pages, 18 figures, 9 tables. The CLASH-VLT spectroscopic catalogs are publicly available at: http://sites.google.com/site/vltclashpublic

    Data Deluge in Astrophysics: Photometric Redshifts as a Template Use Case

    Get PDF
    Astronomy has entered the big data era and Machine Learning based methods have found widespread use in a large variety of astronomical applications. This is demonstrated by the recent huge increase in the number of publications making use of this new approach. The usage of machine learning methods, however is still far from trivial and many problems still need to be solved. Using the evaluation of photometric redshifts as a case study, we outline the main problems and some ongoing efforts to solve them.Comment: 13 pages, 3 figures, Springer's Communications in Computer and Information Science (CCIS), Vol. 82

    CLASH-VLT: Substructure in the galaxy cluster MACS J1206.2-0847 from kinematics of galaxy populations

    Get PDF
    In the effort to understand the link between the structure of galaxy clusters and their galaxy populations, we focus on MACSJ1206.2-0847 at z~0.44 and probe its substructure in the projected phase space through the spectrophotometric properties of a large number of galaxies from the CLASH-VLT survey. Our analysis is mainly based on an extensive spectroscopic dataset of 445 member galaxies, mostly acquired with VIMOS@VLT as part of our ESO Large Programme, sampling the cluster out to a radius ~2R200 (4 Mpc). We classify 412 galaxies as passive, with strong Hdelta absorption (red and blue galaxies, and with emission lines from weak to very strong. A number of tests for substructure detection are applied to analyze the galaxy distribution in the velocity space, in 2D space, and in 3D projected phase-space. Studied in its entirety, the cluster appears as a large-scale relaxed system with a few secondary, minor overdensities in 2D distribution. We detect no velocity gradients or evidence of deviations in local mean velocities. The main feature is the WNW-ESE elongation. The analysis of galaxy populations per spectral class highlights a more complex scenario. The passive galaxies and red strong Hdelta galaxies trace the cluster center and the WNW-ESE elongated structure. The red strong Hdelta galaxies also mark a secondary, dense peak ~2 Mpc at ESE. The emission line galaxies cluster in several loose structures, mostly outside R200. The observational scenario agrees with MACS J1206.2-0847 having WNW-ESE as the direction of the main cluster accretion, traced by passive galaxies and red strong Hdelta galaxies. The red strong Hdelta galaxies, interpreted as poststarburst galaxies, date a likely important event 1-2 Gyr before the epoch of observation. The emission line galaxies trace a secondary, ongoing infall where groups are accreted along several directions.Comment: A&A accepted, 19 pages, 30 figures, minor language change
    corecore