271 research outputs found

    A search for clusters and groups of galaxies on the line of sight towards 8 lensed quasars

    Full text link
    In this paper we present new ESO/VLT FORS1 and ISAAC images of the fields around eight gravitationally lensed quasars: CTQ414, HE0230-2130, LBQS1009-0252, B1030+074, HE1104-1805, B1359+154, H1413+117 and HE2149-2745. When available and deep enough, HST/WFPC2 data were also used to infer the photometric redshifts of the galaxies around the quasars. The search of galaxy overdensities in space and redshift, as well as a weak-shear analysis and a mass reconstruction are presented in this paper. We find that there are most probably galaxy groups towards CTQ414, HE0230-2130, B1359+154, H1413+117 and HE2149-2745, with a mass ~ 4x10^14 M_sol h^-1. Considering its photometric redshift, the galaxy group discovered in the field around HE1104-1805 is associated with the quasar rather than with the lensing potential.Comment: 14 pages, 11 figures(.jpg

    Detection of CO(3-2) Emission at z=2.64 from the Gravitationally Lensed Quasar MG 0414+0534

    Full text link
    We have detected CO(3-2) line emission from the gravitationally lensed quasar MG 0414+0534 at redshift 2.64, using the IRAM Plateau de Bure Interferometer. The line is broad, with Delta v_FWHM = 580 km/s. The velocity-integrated CO flux is comparable to, but somewhat smaller than, that of IRAS F10214+4724 and the Cloverleaf quasar (H1413+117), both of which are at similar redshifts. The lensed components A1+A2 and B were resolved, and separate spectra are presented for each. We also observed the unlensed radio quiet quasar PG 1634+706 at z=1.33, finding no significant CO emission.Comment: To be published in ApJ Letters. 9 pages of text in Latex, using style file aaspp4.sty (included), plus two ps figures to be printed separatel

    The Near Infrared NaI Doublet Feature in M Stars

    Get PDF
    The NaI near-infrared doublet has been used to indicate the dwarf/giant population in composite systems, but its interpretation is still a contentious issue. In order to understand the behaviour of this controversial feature, we study the observed and synthetic spectra of cool stars. We conclude that the NaI infrared feature can be used as a dwarf/giant discriminator. We propose a modified definition of the NaI index by locating the red continuum at 8234 angstrons and by measuring the equivalent width in the range 8172-8197 angstrons, avoiding the region at lambda > 8197 angstrons, which contains VI, ZrI, FeI and TiO lines. We also study the dependence of this feature on stellar atmospheric parameters.Comment: 9 pages, (TeX file) + 7 Figures in Postscript format. Accepted for publication in The Astrophysical Journa

    First Detection of HCO+ Emission at High Redshift

    Get PDF
    We report the detection of HCO+(1-0) emission towards the Cloverleaf quasar (z=2.56) through observations with the Very Large Array. This is the first detection of ionized molecular gas emission at high redshift (z>2). HCO+ emission is a star formation indicator similar to HCN, tracing dense molecular hydrogen gas (n(H_2) ~= 10^5 cm^{-3}) within star-forming molecular clouds. We derive a lensing-corrected HCO+ line luminosity of L'(HCO+) = 3.5 x 10^9 K km/s pc^2. Combining our new results with CO and HCN measurements from the literature, we find a HCO+/CO luminosity ratio of 0.08 and a HCO+/HCN luminosity ratio of 0.8. These ratios fall within the scatter of the same relationships found for low-z star-forming galaxies. However, a HCO+/HCN luminosity ratio close to unity would not be expected for the Cloverleaf if the recently suggested relation between this ratio and the far-infrared luminosity were to hold. We conclude that a ratio between HCO+ and HCN luminosity close to 1 is likely due to the fact that the emission from both lines is optically thick and thermalized and emerges from dense regions of similar volumes. The CO, HCN and HCO+ luminosities suggest that the Cloverleaf is a composite AGN--starburst system, in agreement with the previous finding that about 20% of the total infrared luminosity in this system results from dust heated by star formation rather than heating by the AGN. We conclude that HCO+ is potentially a good tracer for dense molecular gas at high redshift.Comment: 5 pages, 3 figures, ApJL, in press (accepted May 17, 2006

    Recovering star formation histories: Integrated-light analyses vs stellar colour-magnitude diagrams

    Full text link
    Accurate star formation histories (SFHs) of galaxies are fundamental for understanding the build-up of their stellar content. However, the most accurate SFHs - those obtained from colour-magnitude diagrams (CMDs) of resolved stars reaching the oldest main sequence turnoffs (oMSTO) - are presently limited to a few systems in the Local Group. It is therefore crucial to determine the reliability and range of applicability of SFHs derived from integrated light spectroscopy, as this affects our understanding of unresolved galaxies from low to high redshift. To evaluate the reliability of current full spectral fitting techniques in deriving SFHs from integrated light spectroscopy by comparing SFHs from integrated spectra to those obtained from deep CMDs of resolved stars. We have obtained a high signal--to--noise (S/N \sim 36.3 per \AA) integrated spectrum of a field in the bar of the Large Magellanic Cloud (LMC) using EFOSC2 at the 3.6 meter telescope at La Silla Observatory. For this same field, resolved stellar data reaching the oMSTO are available. We have compared the star formation rate (SFR) as a function of time and the age-metallicity relation (AMR) obtained from the integrated spectrum using {\tt STECKMAP}, and the CMD using the IAC-star/MinnIAC/IAC-pop set of routines. For the sake of completeness we also use and discuss other synthesis codes ({\tt STARLIGHT} and {\tt ULySS}) to derive the SFR and AMR from the integrated LMC spectrum. We find very good agreement (average differences \sim 4.1 %\%) between the SFR(t) and the AMR obtained using {\tt STECKMAP} on the integrated light spectrum, and the CMD analysis. {\tt STECKMAP} minimizes the impact of the age-metallicity degeneracy and has the advantage of preferring smooth solutions to recover complex SFHs by means of a penalized χ2\chi^2. [abridged]Comment: 23 pages, 24 figures. Accepted for publication in A&A (6 Sep 2015

    Red and Blue Shifted Broad Lines in Luminous Quasars

    Get PDF
    We have observed a sample of 22 luminous quasars, in the range 2.0<z<2.5, at 1.6 microns with the near-infrared (NIR) spectrograph FSPEC on the Multiple Mirror Telescope. Our sample contains 13 radio-loud and 9 radio-quiet objects. We have measured the systemic redshifts z_(sys) directly from the strong [O III]5007 line emitted from the narrow-line-region. From the same spectra, we have found that the non-resonance broad Hβ\beta lines have a systematic mean redward shift of 520+/-80 km/s with respect to systemic. Such a shift was not found in our identical analysis of the low-redshift sample of Boroson & Green. The amplitude of this redshift is comparable to half the expected gravitational redshift and transverse Doppler effects, and is consistent with a correlation between redshift differences and quasar luminosity. From data in the literature, we confirm that the high-ionization rest-frame ultraviolet broad lines are blueshifted ~550-1050 km/s from systemic, and that these velocity shifts systematically increase with ionization potential. Our results allow us to quantify the known bias in estimating the ionizing flux from the inter-galactic-medium J_(IGM) via the Proximity Effect. Using redshift measurements commonly determined from strong broad line species, like Ly\alpha or CIV1549, results in an over-estimation of J_(IGM) by factors of ~1.9-2.3. Similarly, corresponding lower limits on the density of baryon Omega_b will be over-estimated by factors of ~1.4-1.5. However, the low-ionization MgII2798 broad line is within ~50 km/s of systemic, and thus would be the line of choice for determining the true redshift of 1.0<z<2.2 quasars without NIR spectroscopy, and z>3.1 objects using NIR spectroscopy.Comment: 12 pages, Latex, 2 figures, 2 tables, Accepted for publication in ApJ Letter

    Detection of Emission from the CN Radical in the Cloverleaf Quasar at z=2.56

    Full text link
    We report the detection of CN(N=3-2) emission towards the Cloverleaf quasar (z=2.56) based on observations with the IRAM Plateau de Bure Interferometer. This is the first clear detection of emission from this radical at high redshift. CN emission is a tracer of dense molecular hydrogen gas (n(H2) > 10^4 cm^{-3}) within star-forming molecular clouds, in particular in regions where the clouds are affected by UV radiation. The HCN/CN intensity ratio can be used as a diagnostic for the relative importance of photodissociation regions (PDRs) in a source, and as a sensitive probe of optical depth, the radiation field, and photochemical processes. We derive a lensing-corrected CN(N=3-2) line luminosity of L'(CN(3-2) = (4.5 +/- 0.5) x 10^9 K km/s pc^2. The ratio between CN luminosity and far-infrared luminosity falls within the scatter of the same relationship found for low-z (ultra-) luminous infrared galaxies. Combining our new results with CO(J=3-2) and HCN(J=1-0) measurements from the literature and assuming thermal excitation for all transitions, we find a CO/CN luminosity ratio of 9.3 +/- 1.9 and a HCN/CN luminosity ratio of 0.95 +/- 0.15. However, we find that the CN(N=3-2) line is likely only subthermally excited, implying that those ratios may only provide upper limits for the intrinsic 1-0 line luminosity ratios. We conclude that, in combination with other molecular gas tracers like CO, HCN, and HCO+, CN is an important probe of the physical conditions and chemical composition of dense molecular environments at high redshift.Comment: 6 pages, 5 figures, 1 table, to appear in ApJ (accepted May 23, 2007

    Reverberation Mapping and the Physics of Active Galactic Nuclei

    Get PDF
    Reverberation-mapping campaigns have revolutionized our understanding of AGN. They have allowed the direct determination of the broad-line region size, enabled mapping of the gas distribution around the central black hole, and are starting to resolve the continuum source structure. This review describes the recent and successful campaigns of the International AGN Watch consortium, outlines the theoretical background of reverberation mapping and the calculation of transfer functions, and addresses the fundamental difficulties of such experiments. It shows that such large-scale experiments have resulted in a ``new BLR'' which is considerably different from the one we knew just ten years ago. We discuss in some detail the more important new results, including the luminosity-size-mass relationship for AGN, and suggest ways to proceed in the near future.Comment: Review article to appear in Astronomical Time Series, Proceedings of the Wise Observatory 25th Ann. Symposium. 24 pages including 7 figure

    Gas Metallicity of Narrow-Line Regions in Narrow-Line Seyfert 1 Galaxies and Broad-Line Seyfert 1 Galaxies

    Get PDF
    We investigate gas metallicity of narrow-line regions in narrow-line Seyfert 1 galaxies (NLS1s) and broad-line ones (BLS1s) in order to examine whether or not there is a difference in the gas metallicity between the two populations of Seyfert 1 galaxies. We apply two methods to study this issue. One is to use the emission-line flux ratio of [N II]6583/H_alpha in combination with some other optical emission-line flux ratios. This method, which has been often applied to Seyfert 2 galaxies, suggests that the gas metallicity of narrow-line regions is indistinguishable or possibly higher in BLS1s than in NLS1s. On the contrary, the other method in which only forbidden emission-line fluxes are used results in that NLS1s tend to possess metal-richer gas in the narrow-line regions than BLS1s. We point out that this inconsistency may be owing to the contamination of the broad component of permitted lines into the narrow component of ones in the first method. Since the results derived by using only forbidden emission-line fluxes do not suffer from any uncertainty of the fitting function for the broad component of Balmer lines, the results from this method are more reliable than those derived by using permitted lines. We thus conclude that the gas metallicity of narrow-line regions tends to be higher in NLS1s than in BLS1s.Comment: 12 pages including 10 figures, to appear in The Astrophysical Journa

    Gas and Dust in the Cloverleaf Quasar at Redshift 2.5

    Full text link
    We observed the upper fine structure line of neutral carbon, CI(2-1), the CO(3-2) line and the 1.2mm continuum emission from H1413+117 (Cloverleaf quasar, z=2.5) using the IRAM interferometer. Together with the detection of the lower fine structure line (Barvainis etal. 1997), the Cloverleaf quasar is now only the second extragalactic system, besides M82, where both carbon lines have convincingly been detected. Our analysis shows that the carbon lines are optically thin and have an excitation temperature of ~30 K. CO is subthermally excited and the observed line luminosity ratios are consistent with n(H2)=10^(3-4) cm^(-3) at Tkin=30-50 K. Using three independent methods (CI, dust, CO) we derive a total molecular gas mass (corrected for magnification) of M(H2)=1.2+/-0.3*10^(10) SM. Our observations suggest that the molecular disk extends beyond the region seen in CO(7-6) to a zone of more moderately excited molecular gas that dominates the global emission in CI and the low J CO lines.Comment: 5 pages, 3 figures; accepted by A&
    corecore