3,426 research outputs found

    Self-focusing threshold of Gaussian-elliptic light beams

    Get PDF
    There is now substantial evidence to indicate that the long damage filaments created by laser beams passing through solid materials are due to self-focusing

    Nearby Optical Galaxies: Selection of the Sample and Identification of Groups

    Get PDF
    In this paper we describe the Nearby Optical Galaxy (NOG) sample, which is a complete, distance-limited (czcz\leq6000 km/s) and magnitude-limited (B\leq14) sample of \sim7000 optical galaxies. The sample covers 2/3 (8.27 sr) of the sky (b>20|b|>20^{\circ}) and appears to have a good completeness in redshift (98%). We select the sample on the basis of homogenized corrected total blue magnitudes in order to minimize systematic effects in galaxy sampling. We identify the groups in this sample by means of both the hierarchical and the percolation {\it friends of friends} methods. The resulting catalogs of loose groups appear to be similar and are among the largest catalogs of groups presently available. Most of the NOG galaxies (\sim60%) are found to be members of galaxy pairs (\sim580 pairs for a total of \sim15% of objects) or groups with at least three members (\sim500 groups for a total of \sim45% of objects). About 40% of galaxies are left ungrouped (field galaxies). We illustrate the main features of the NOG galaxy distribution. Compared to previous optical and IRAS galaxy samples, the NOG provides a denser sampling of the galaxy distribution in the nearby universe. Given its large sky coverage, the identification of groups, and its high-density sampling, the NOG is suited for the analysis of the galaxy density field of the nearby universe, especially on small scales

    Pairing of Cooper pairs in a Josephson junction network containing an impurity

    Full text link
    We show how to induce pairing of Cooper pairs (and, thus, 4e4e superconductivity) as a result of local embedding of a quantum impurity in a Josephson network fabricable with conventional junctions. We find that a boundary double Sine-Gordon model provides an accurate description of the dc Josephson current patterns, as well as of the stable phases accessible to the network. We point out that tunneling of pairs of Cooper pairs is robust against quantum fluctuations, as a consequence of the time reversal invariance, arising when the central region of the network is pierced by a dimensionless magnetic flux ϕ=π\phi = \pi. We find that, for ϕ=π\phi = \pi, a stable attractive finite coupling fixed point emerges and point out its relevance for engineering a two level quantum system with enhanced coherence.Comment: 5 Pages, 5 Figures. Small modifications, ref.[11] added. To appear in EP

    Coplanar back contacts for thin silicon solar cells

    Get PDF
    The type of coplanar back contact solar cell described was constructed with interdigitated n(+) and p(+) type regions on the back of the cell, such that both contacts are made on the back with no metallization grid on the front. This cell construction has several potential advantages over conventional cells for space use namely, convenience of interconnects, lower operating temperatures and higher efficiency due to the elimination of grid shadowing. However, the processing is more complex, and the cell is inherently more radiation sensitive. The latter problem can be reduced substantially by making the cells very thin (approximately 50 micrometers). Two types of interdigitated back contact cells are possible, the types being dependent on the character of the front surface. The front surface field cell has a front surface region that is of the same conductivity type as the bulk but is more heavily doped. This creates an electric field at the surface which repels the minority carriers. The tandem junction cell has a front surface region of a conductivity type that is opposite to that of the bulk. The junction thus created floats to open circuit voltage on illumination and injects carriers into the bulk which then can be collected at the rear junction. For space use, the front surface field cell is potentially more radiation resistant than the tandem junction cell because the flow of minority carriers (electrons) into the bulk will be less sensitive to the production of recombination centers, particularly in the space charge region at the front surface

    Josephson current through a long quantum wire

    Full text link
    The dc Josephson current through a long SNS junction receives contributions from both Andreev bound states localized in the normal region as well as from scattering states incoming from the superconducting leads. We show that in the limit of a long junction, this current, at low temperatures, can be expressed entirely in terms of properties of the Andreev bound states at the Fermi energy: the normal and Andreev reflection amplitudes at the left-hand and at the right-hand S-N interface. This has important implications for treating interactions in such systems.Comment: 25 pages, 5 figure

    Ratings-based regulation and systematic risk incentives

    Get PDF
    Funding agency and sponsor: CAREFIN, University of Tennessee, University of Virginia and Institut Européen d'Administration des Affaires. Funding text: An earlier version of this paper was titled “Bank regulation, credit ratings, and systematic risk.” Valuable comments were provided by the Editor Itay Goldstein, three anonymous referees, Tobias Berg, Thomas Cooley, Timotej Homar, Christine Parlour, Andrea Resti, Francesco Saita, Andrea Sironi, René Stulz, and Andrew Winton; participants of the 2011 International Risk Management Conference, the 2011 Bank of Finland Future of Risk Management Conference, the 2012 Financial Risks International Forum, the 2012 Red Rock Conference, the 2012 FDIC Bank Research Conference, the 2012 Banque centrale du Luxembourg Conference, the 2013 Financial Intermediation Research Society Meetings, the 2013 Banco de Portugal Financial Intermediation Conference, and the 2014 Wharton Liquidity and Financial Crises Conference; and seminar participants at Copenhagen Business School, the Federal Reserve Banks of Cleveland and San Francisco, the Federal Reserve Board, HEC Paris, Imperial College, Indiana University, INSEAD, the Korea Deposit Insurance Corporation, Universitá Bocconi, Universitat Pompeu Fabra, the University of Tennessee, the University of Virginia, and Warwick Business School. We are very grateful to CAREFIN for providing financial assistance. The views stated herein are those of the authors and are not necessarily those of the Federal Reserve Bank of New York or the Federal Reserve SystemOur model shows that when regulation is based on credit ratings, banks with low charter value maximize shareholder value by minimizing capital and selecting identically rated loans and bonds with the highest systematic risk. This regulatory arbitrage is possible if the credit spreads on same-rated loans and bonds are greater when their systematic risk (debt beta) is higher. We empirically confirm this relationship between credit spreads, ratings, and debt betas. We also show that banks with lower capital select syndicated loans with higher debt betas and credit spreads. Banks with lower charter value choose overall assets with higher systematic risk.authorsversionpublishe

    MELK expression correlates with tumor mitotic activity but is not required for cancer growth

    Get PDF
    The Maternal Embryonic Leucine Zipper Kinase (MELK) has been identified as a promising therapeutic target in multiple cancer types. MELK over-expression is associated with aggressive disease, and MELK has been implicated in numerous cancer-related processes, including chemotherapy resistance, stem cell renewal, and tumor growth. Previously, we established that triple-negative breast cancer cell lines harboring CRISPR/Cas9-induced null mutations in MELK proliferate at wild-type levels in vitro (Lin et al., 2017). Here, we generate several additional knockout clones of MELK and demonstrate that across cancer types, cells lacking MELK exhibit wild-type growth in vitro, under environmental stress, in the presence of cytotoxic chemotherapies, and in vivo. By combining our MELK-knockout clones with a recently described, highly specific MELK inhibitor, we further demonstrate that the acute inhibition of MELK results in no specific anti-proliferative phenotype. Analysis of gene expression data from cohorts of cancer patients identifies MELK expression as a correlate of tumor mitotic activity, explaining its association with poor clinical prognosis. In total, our results demonstrate the power of CRISPR/Cas9-based genetic approaches to investigate cancer drug targets, and call into question the rationale for treating patients with anti-MELK monotherapies

    Cardiovascular autonomic function and MCI in Parkinson's disease

    Get PDF
    Introduction: dysautonomic dysfunction and cognitive impairment represent the most disabling non-motor features of Parkinson's Disease (PD). Recent evidences suggest the association between Orthostatic Hypotension (OH) and PD-Dementia. However, little is known on the interactions between cardiovascular dysautonomia and Mild Cognitive Impairment (MCI). We aimed to evaluate the association between cardiovascular dysautonomia and MCI in patients with PD. Methods: non-demented PD patients belonging to the PACOS cohort underwent a comprehensive instrumental neurovegetative assessment including the study of both parasympathetic and sympathetic function (30:15 ratio, Expiratory-Inspiratory ratio [E-I] and presence of Orthostatic Hypotension [OH]). Diagnosis of MCI was made according to the MDS criteria level II. Results: we enrolled 185 PD patients of whom 102 (55.1%) were men, mean age was 64.6 ± 9.7 years, mean disease duration of 5.6 ± 5.5 years with a mean UPDRS-ME score of 31.7 ± 10.9. MCI was diagnosed in 79 (42.7%) patients. OH was recorded in 52 (28.1%) patients, altered 30:15 ratio was recorded in 39 (24.1%) patients and an altered E-I ratio was found in 24 (19.1%) patients. Presence of MCI was associated with an altered 30:15 ratio (adjOR 2.83; 95%CI 1.25–6.40) but not with an altered E-I ratio, while OH was associated only with the amnestic MCI subgroup (OR 2.43; 95% CI 1.05–5.06). Conclusion: in our study sample, MCI was mainly associated with parasympathetic dysfunction in PD

    Topological Quantum Phase Transitions in Topological Superconductors

    Full text link
    In this paper we show that BF topological superconductors (insulators) exibit phase transitions between different topologically ordered phases characterized by different ground state degeneracy on manifold with non-trivial topology. These phase transitions are induced by the condensation (or lack of) of topological defects. We concentrate on the (2+1)-dimensional case where the BF model reduce to a mixed Chern-Simons term and we show that the superconducting phase has a ground state degeneracy kk and not k2k^2. When the symmetry is U(1)×U(1)U(1) \times U(1), namely when both gauge fields are compact, this model is not equivalent to the sum of two Chern-Simons term with opposite chirality, even if naively diagonalizable. This is due to the fact that U(1) symmetry requires an ultraviolet regularization that make the diagonalization impossible. This can be clearly seen using a lattice regularization, where the gauge fields become angular variables. Moreover we will show that the phase in which both gauge fields are compact is not allowed dynamically.Comment: 5 pages, no figure
    corecore