7 research outputs found

    Monitoring magnesium degradation using microdialysis and fabric-based biosensors

    Get PDF
    This paper describes the development of a monitoring system capable of detecting the concentration of magnesium ions (Mg2+) released during the degradation of magnesium implants. The system consists of a microdialysis probe that samples fluid adjacent to the implant and a catalytic biosensor specific to Mg2+ ions. The biosensor was fabricated on a cotton fabric platform, in which a mixture of glycerol kinase and glycerol-3-phosphate oxidase enzymes was immobilized on the fabric device via a simple matrix entrapment technique of the cotton fibers. Pure magnesium was used as the implant material. Subsequently, the concentration of ions released from the degradation of the magnesium specimen in Ringer’s solution was evaluated using cyclic voltammetry technique. The device demonstrated a pseudo-linear response from 0.005 to 0.1 mmol L−1 with a slope of 67.48 ÎŒA mmol−1 L. Detectable interfering species were lesser than 1% indicating a high selectivity of the fabric device. Furthermore, the device requires only 3 ÎŒL of fluid sample to complete the measurement compared to spectroscopic method (±50 ÎŒL), hence providing a higher temporal resolution and reduced sampling time. The system could potentially provide a real time assessment of the degradation behavior, a new studied aspect in biodegradable metals research

    Biosensors and invasive monitoring in clinical applications

    No full text
    This volume examines the advances of invasive monitoring by means of biosensors and microdialysis. Physical and physiological parameters are commonly monitored in clinical settings using invasive techniques due to their positive outcome in patients’ diagnosis and treatment. Biochemical parameters, however, still rely on off-line measurements and require large pieces of equipment. Biosensing and sampling devices present excellent capabilities for their use in continuous monitoring of patients’ biochemical parameters. However, certain issues remain to be solved in order to ensure a more widespread use of these techniques in today’s medical practices

    Nanosporous silicon as drug delivery system for cancer therapies

    Get PDF
    Porous silicon nanoparticles have been established as excellent candidates for medical applications as drug delivery devices, due to their excellent biocompatibility, biodegradability, and high surface area. The simple fabrication method by electrochemical anodization of silicon and its photoluminescent properties are some of the merits that have contributed to the increasing interest given to porous silicon. This paper presents the methods of fabrication, which can be customized to control the pore size, various chemical treatments used for the modification of silicon surfaces, and the characterization and pore morphology of silicon structures. Different approaches used for drug loading and the variety of coatings used for the controlled released are revised. The monitoring of the toxicity of silicon degradation products and the in vivo release of a drug in a specific site are described taking into account its significance on medical applications, specifically on cancer therapy

    Saliva-based biosensors: noninvasive monitoring tool for clinical diagnostics

    No full text
    Saliva is increasingly recognised as an attractive diagnostic fluid. The presence of various disease signalling salivary biomarkers that accurately reflect normal and disease states in humans and the sampling benefits compared to blood sampling are some of the reasons for this recognition. This explains the burgeoning research field in assay developments and technological advancements for the detection of various salivary biomarkers to improve clinical diagnosis, management, and treatment. This paper reviews the significance of salivary biomarkers for clinical diagnosis and therapeutic applications, with focus on the technologies and biosensing platforms that have been reported for screening these biomarkers
    corecore