29 research outputs found

    Structural basis of synthetic agonist activation of the nuclear receptor REV-ERB

    Get PDF
    The nuclear receptor REV-ERB plays an important role in a range of physiological processes. REV-ERB behaves as a ligand-dependent transcriptional repressor and heme has been identified as a physiological agonist. Our current understanding of how ligands bind to and regulate transcriptional repression by REV-ERB is based on the structure of heme bound to REV-ERB. However, porphyrin (heme) analogues have been avoided as a source of synthetic agonists due to the wide range of heme binding proteins and potential pleotropic effects. How non-porphyrin synthetic agonists bind to and regulate REV-ERB has not yet been defined. Here, we characterize a high affinity synthetic REV-ERB agonist, STL1267, and describe its mechanism of binding to REV-ERB as well as the method by which it recruits transcriptional corepressor both of which are unique and distinct from that of heme-bound REV-ERB

    Towards chemical validation of Leishmania infantum ribose 5-phosphate isomerase as a drug target

    Get PDF
    Funding from the European Community's Seventh Framework Programme under grant agreements No. 602773 (Project KINDRED) was received for all partners in this work. This work also received funds from FCT - Fundação para a Ciência e a Tecnologia/Ministério da Ciência, Tecnologia e Ensino Superior through the Research Unit No. 4293 and project POCI-01-0145-FEDER-031013 (PTDC/SAUPAR/31013/2017 to NS); Individual funding from FCT through SFRH/BD/133485/2017 (to MS) and CEECIND/02362/2017 (to JT).Neglected tropical diseases caused by kinetoplastid parasites (Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp.) place a significant health and economic burden on developing nations worldwide. Current therapies are largely out-dated, inadequate and facing mounting drug resistance from the causative parasites. Thus, there is an urgent need for drug discovery and development. Target-led drug discovery approaches have focused on the identification of parasite enzymes catalysing essential biochemical processes, which significantly differ from equivalent proteins found in humans, thereby providing potentially exploitable therapeutic windows. One such target is ribose 5-phosphate isomerase B (RpiB), an enzyme involved in the non-oxidative branch of the pentose phosphate pathway, which catalyses the inter-conversion of D-ribose 5-phosphate and D-ribulose 5-phosphate. Although protozoan RpiB has been the focus of numerous targeted studies, compounds capable of selectively inhibiting this parasite enzyme have not been identified. Here, we present the results of a fragment library screening against Leishmania infantum RpiB, performed using thermal shift analysis. Hit fragments were shown to be effective inhibitors of LiRpiB in activity assays, and several were capable of selectively inhibiting parasite growth in vitro. These results support the identification of LiRpiB as a validated therapeutic target. The X-ray crystal structure of apo LiRpiB was also solved, permitting docking studies to assess how hit fragments might interact with LiRpiB to inhibit its activity. Overall, this work will guide structure-based development of LiRpiB inhibitors as anti-leishmanial agents.PostprintPeer reviewe

    Inhibitors of trypanosoma cruzi Sir2 related protein 1 as potential drugs against Chagas disease.

    Get PDF
    Chagas disease remains one of the most neglected diseases in the world despite being the most important parasitic disease in Latin America. The characteristic chronic manifestation of chagasic cardiomyopathy is the region's leading cause of heart-related illness, causing significant mortality and morbidity. Due to the limited available therapeutic options, new drugs are urgently needed to control the disease. Sirtuins, also called Silent information regulator 2 (Sir2) proteins have long been suggested as interesting targets to treat different diseases, including parasitic infections. Recent studies on Trypanosoma cruzi sirtuins have hinted at the possibility to exploit these enzymes as a possible drug targets. In the present work, the T. cruzi Sir2 related protein 1 (TcSir2rp1) is genetically validated as a drug target and biochemically characterized for its NAD+-dependent deacetylase activity and its inhibition by the classic sirtuin inhibitor nicotinamide, as well as by bisnaphthalimidopropyl (BNIP) derivatives, a class of parasite sirtuin inhibitors. BNIPs ability to inhibit TcSir2rp1, and anti-parasitic activity against T. cruzi amastigotes in vitro were investigated. The compound BNIP Spermidine (BNIPSpd) (9), was found to be the most potent inhibitor of TcSir2rp1. Moreover, this compound showed altered trypanocidal activity against TcSir2rp1 overexpressing epimastigotes and anti-parasitic activity similar to the reference drug benznidazole against the medically important amastigotes, while having the highest selectivity index amongst the compounds tested. Unfortunately, BNIPSpd failed to treat a mouse model of Chagas disease, possibly due to its pharmacokinetic profile. Medicinal chemistry modifications of the compound, as well as alternative formulations may improve activity and pharmacokinetics in the future. Additionally, an initial TcSIR2rp1 model in complex with p53 peptide substrate was obtained from low resolution X-ray data (3.5 Ă…) to gain insight into the potential specificity of the interaction with the BNIP compounds. In conclusion, the search for TcSir2rp1 specific inhibitors may represent a valuable strategy for drug discovery against T. cruzi

    The crystal structure of the Leishmania infantum Silent Information Regulator 2 related protein 1: implications to protein function and drug design.

    Get PDF
    The research leading to these results received funding from the European Community’s Seventh Framework Programme under grant agreement No.602773 (Project KINDRED).The de novo crystal structure of the Leishmania infantum Silent Information Regulator 2 related protein 1 (LiSir2rp1) has been solved at 1.99Å in complex with an acetyl-lysine peptide substrate. The structure is broadly commensurate with Hst2/SIRT2 proteins of yeast and human origin, reproducing many of the structural features common to these sirtuin deacetylases, including the characteristic small zinc-binding domain, and the larger Rossmann-fold domain involved in NAD+-binding interactions. The two domains are linked via a cofactor binding loop ordered in open conformation. The peptide substrate binds to the LiSir2rp1 protein via a cleft formed between the small and large domains, with the acetyl-lysine side chain inserting further into the resultant hydrophobic tunnel. Crystals were obtained only with recombinant LiSir2rp1 possessing an extensive internal deletion of a proteolytically-sensitive region unique to the sirtuins of kinetoplastid origin. Deletion of 51 internal amino acids (P253-E303) from LiSir2rp1 did not appear to alter peptide substrate interactions in deacetylation assays, but was indispensable to obtain crystals. Removal of this potentially flexible region, that otherwise extends from the classical structural elements of the Rossmann-fold, specifically the β8-β9 connector, appears to result in lower accumulation of the protein when expressed from episomal vectors in L. infantum SIR2rp1 single knockout promastigotes. The biological function of the large serine-rich insertion in kinetoplastid/trypanosomatid sirtuins, highlighted as a disordered region with strong potential for post-translational modification, remains unknown but may confer additional cellular functions that are distinct from their human counterparts. These unique molecular features, along with the resolution of the first kinetoplastid sirtuin deacetylase structure, present novel opportunities for drug design against a protein target previously established as essential to parasite survival and proliferation.Publisher PDFPeer reviewe

    Structural genomic approach to study Schislosoma mansoni nuclear receptors

    No full text
    Les schistosomiases représentent la deuxième endémie parasitaire mondiale après le paludisme avec 207 millions de personnes infectées et 600 millions d’individus exposés. L’existence d’une seule molécule efficace (le praziquantel) comme traitement, l’absence actuelle de vaccin et la crainte de l’apparition de résistances incitent à développer rapidement de nouvelles stratégies antiparasitaires. Une meilleure compréhension de la biologie du parasite et des interactions qu’il entretient avec son hôte est le premier pas vers l’identification de nouvelles cibles thérapeutiques et/ou vaccinales. Les membres de la famille des récepteurs nucléaires semblent être des candidats d’étude idéaux, étant à la fois des acteurs centraux de nombreux processus physiologiques et leur activité pouvant être modulée par la liaison de petites molécules synthétiques au niveau de leur domaine de liaison du ligand (LBD). Ce travail de thèse a consisté à appliquer une approche de génomique structurale aux membres de la famille des récepteurs nucléaires de S. mansoni pour aboutir, par l’étude expérimentale du LBD de 7 d’entre eux, à leur caractérisation en termes de ligand et de mécanisme d’action, et à la résolution de la toute première structure cristallographique d’un LBD de récepteur nucléaire de cet organisme, celui de SmRXR1 (homologue du récepteur des rétinoïdes X). Ces résultats d’une part suggèrent un subtil équilibre entre conservation de mécanisme d’action et développement d’autres mécanismes pour la régulation de la transcription et d’autre part ouvrent la voie à la conception de ligands de haute affinité comme outils exploratoires pour étudier le rôle physiologique de ces récepteurs.Schistosomiasis is a neglected disease caused by parasitic worms. Among human parasitic illnesses, it ranks second after malaria with more than 200 million people infected worldwide. Praziquantel is the only drug used to treat diagnosed people, no preventive drug or vaccine being available. Progressive emergence of praziquantel resistant strains is thought to become an additional threat for the populations at risk. These facts stress for the development of new therapeutic strategies. Scientific efforts to better understand the parasite’s biology and hostparasite interactions should contribute to the development of new drugs and/or vaccines. Recently, homologues of nuclear receptors – known in vertebrates and invertebrates to play key developmental and physiological functions – were found in schistosomes. Druggable for the most part, this class of receptors may represent interesting targets to fight schistosomiasis. The goal of my thesis work was to study with a genomic structural approach Schistosoma mansoni nuclear receptors (SmNRs) at the atomic level to get insights into : the natural modulators for several members of this family, the mechanism of action allowing signal transduction in cells and the druggability of SmNRs. The coding sequences of seven SmNRs were available in the laboratory and used for this study. With the determination of the first three-dimensional structure of the SmRXR1 ligand-binding domain (homologue 1 of the mammalian retinoid X receptor), this work unveiled interesting homologies and differences in the mechanism of action of SmNRs and paves the way towards the design of small molecules/modulators to be used as exploratory tools to dissect the physiological functions of SmNRs

    Evaluating the affinity and kinetics of small molecule glycomimetics for human and mouse galectin-3 using surface plasmon resonance

    No full text
    Galectin-3 is a beta-galactoside-binding mammalian lectin that is one of a 15-member galectin family that can bind several cell surface glycoproteins via its carbohydrate recognition domain (CRD). As a result, it can influence a range of cellular processes including cell activation, adhesion and apoptosis. Galectin-3 has been implicated in various diseases, including fibrotic disorders and cancer, and is now being therapeutically targeted by both small and large molecules. Historically, the screening and triaging of small molecule glycomimetics that bind to the galectin-3 CRD has been completed in fluorescence polarisation (FP) assays to determine KD values. Surface plasmon resonance (SPR) has not been widely used for compound screening and in this study it was used to compare human and mouse galectin-3 affinity measures between FP and SPR, as well as investigate compound kinetics. The KD estimates for a set of compounds selected from mono- and di-saccharides with affinities across a 550-fold range, correlated well between FP and SPR assay formats for both human and mouse galectin-3. Increases in affinity for compounds binding to human galectin-3 were driven by changes in both kon and koff whilst for mouse galectin-3 this was primarily due to kon. The reduction in affinity observed between human to mouse galectin-3 was also comparable between assay formats. SPR has been shown to be a viable alternative to FP for early drug discovery screening and determining KD values. In addition, it can also provide early kinetic characterisation of small molecule galectin-3 glycomimetics with robust kon and koff values generated in a high throughput manner
    corecore