27 research outputs found

    Multidimensionality of plant defenses and herbivore niches: implications for eco-evolutionary dynamics

    No full text
    International audiencePlant defenses are very diverse and often involve contrasted costs and benefits. Quantitative defenses, whose protective effect is dependent on the dose, are effective against a wide range of herbivores, but often divert energy from growth and reproduction. Qualitative defenses often have little allocation costs. However, while deterrent to some herbivores, they often incur costs through other interactions within the community (eg, decrease in pollination or attraction of other enemies). In the present work, we model the evolutionary dynamics of these two types of defenses, as well and the evolutionary dynamics of the herbivore niche. We assess the effects of such evolutionary dynamics for the maintenance of diversity within the plant-herbivore system, and for the functioning of such systems under various levels of resource availability. We show that the two types of defenses have different implications. Evolution of quantitative defenses often helps to maintain or even increase diversity, while evolution of qualitative defenses most often has a detrimental effect on species coexistence. From a functional point of view, increased resource availability selects for higher levels of quantitative defenses, which reduces top-down controls exerted by herbivores. Resource availability does not affect qualitative defenses, nor the evolution of the herbivore niche. The growing evidence that plant defenses are diverse in types, benefits and costs has large implications not only for the evolution of these traits, but also for their impacts on community diversity and ecosystem functioning

    Comportements de dispersion et propriétés des métacommunautés proie-prédateur (approches théoriques et expérimentales)

    No full text
    Cette thèse étudie l importance des comportements de dispersion dans les conséquences de la fragmentation de l habitat sur les dynamiques et la stabilité des communautés. J utilise le cadre conceptuel des métacommunauté qui permet l étude de l importance des processus se produisant à deux échelles spatiales imbriquées, l échelle locale des communautés et l échelle régionale des métacommunautés. 1) Dans des expériences en microcosmes, je montre que la dispersion densité-dépendante peut exister chez des organismes simples (protozoaires). 2) Un modèle théorique montre que l effet de la fragmentation sur les métacommunautés proie-prédateur dépend à la fois des comportements de dispersion densité-dépendante et de la dispersion relative des proies et de leurs prédateurs. 3) Dans une expérience en microcosme, je montre que les dynamiques des proies et des prédateurs sont fortement déterminées par la régulation locale et sont robustes aux changements de dispersion imposés par l expérience.PARIS-BIUSJ-Thèses (751052125) / SudocPARIS-BIUSJ-Physique recherche (751052113) / SudocSudocFranceF

    Ingredients for protist coexistence: competition, endosymbiosis and a pinch of biochemical interactions

    No full text
    International audience1. The interaction between mutualism, facilitation or interference and exploitation competition is of major interest as it may govern species coexistence. However, the interplay of these mechanisms has received little attention. This issue dates back to Gause, who experimentally explored competition using protists as a model [Gause, G.F. (1935) Verifications experimentales de la theorie mathematique de la lutte pour la vie. Actualites Scientifiques et Industrielles, 277]. He showed the coexistence of Paramecium caudatum with a potentially allelopathic species, Paramecium bursaria. 2. Paramecium bursaria hosts the green algae Chlorella vulgaris. Therefore, P. bursaria may benefit from carbohydrates synthesised by the algae. Studying endosymbiosis with P. bursaria is possible as it can be freed of its endosymbiont. In addition, C. vulgaris is known to produce allelochemicals, and P. bursaria may benefit also from allelopathic compounds. 3. We designed an experiment to separate the effects of resource exploitation, endosymbiosis and allelopathy and to assess their relative importance for the coexistence of P. bursaria with a competitor that exploits the same resource, bacteria. The experiment was repeated with two competitors, Colpidium striatum or Tetrahymena pyriformis. 4. Results show that the presence of the endosymbiont enables the coexistence of competitors, while its loss leads to competitive exclusion. These results are in agreement with predictions based on resource equilibrium density of monocultures (R*) supporting the idea that P. bursaria's endosymbiont is a resource provider for its host. When P. bursaria and T. pyriformis coexist, the density of the latter shows large variation that match the effects of culture medium of P. bursaria. Our experiment suggests these effects are because of biochemicals produced in P. bursaria culture. 5. Our results expose the hidden diversity of mechanisms that underlie competitive interactions. They thus support Gauses's speculation (1935) that allelopathic effects might have been involved in his competition experiments. We discuss how a species engaged both in competition for a resource and in costly interference such as allelopathy may counterbalance these costs with a resource-provider endosymbiont

    Stochastic eco-evolutionary model of a prey-predator community

    No full text
    International audienceWe are interested in the impact of natural selection in a prey-predator community. We introduce an individual-based model of the community that takes into account both prey and predator phenotypes. Our aim is to understand the phenotypic coevolution of prey and predators. The community evolves as a multi-type birth and death process with mutations. We first consider the infinite particle approximation of the process without mutation. In this limit, the process can be approximated by a system of differential equations. We prove the existence of a unique globally asymptotically stable equilibrium under specific conditions on the interaction among prey individuals. When mutations are rare, the community evolves on the mutational scale according to a Markovian jump process. This process describes the successive equilibria of the prey-predator community and extends the Polymorphic Evolutionary Sequence to a coevolutionary framework. We then assume that mutations have a small impact on phenotypes and consider the evolution of monomorphic prey and predator populations. The limit of small mutation steps leads to a system of two differential equations which is a version of the canonical equation of adaptive dynamics for the prey-predator coevolution. We illustrate these results with an example including different prey defense mechanisms

    Intra- and interspecific density-dependent dispersal in an aquatic prey-predator system

    No full text
    International audienceDispersal intensity is a key process for the persistence of prey–predator metacommunities. Consequently, knowledge of the ecological mechanisms of dispersal is fundamental to understanding the dynamics of these communities. Dispersal is often considered to occur at a constant per capita rate; however, some experiments demonstrated that dispersal may be a function of local species density. Here we use aquatic experimental microcosms under controlled conditions to explore intra- and interspecific density-dependent dispersal in two protists, a prey Tetrahymena pyriformis and its predator Dileptus sp. We observed intraspecific density-dependent dispersal for the prey and interspecific density-dependent dispersal for both the prey and the predator. Decreased prey density lead to an increase in predator dispersal, while prey dispersal increased with predator density. Additional experiments suggest that the prey is able to detect its predator through chemical cues and to modify its dispersal behaviour accordingly. Density-dependent dispersal suggests that regional processes depend on local community dynamics. We discuss the potential consequences of density-dependent dispersal on metacommunity dynamics and stability

    Density-dependent dispersal and relative dispersal affect the stability of predator-prey metacommunities

    No full text
    International audienceAlthough density-dependent dispersal and relative dispersal (the difference in dispersal rates between species) have been documented in natural systems, their effects on the stability of metacommunities are poorly understood. Here we investigate the effects of intra- and interspecific density-dependent dispersal on the regional stability in a predator-prey metacommunity model. We show that, when the dynamics of the populations reach equilibrium, the stability of the metacommunity is not affected by density-dependent dispersal. However, the regional stability, measured as the regional variability or the persistence, can be modified by density-dependent dispersal when local populations fluctuate over time. Moreover these effects depend on the relative dispersal of the predator and the prey. Regional stability is modified through changes in spatial synchrony. Interspecific density-dependent dispersal always desynchronises local dynamics, whereas intraspecific density-dependent dispersal may either synchronise or desynchronise it depending on dispersal rates. Moreover, intra- and interspecific density-dependent dispersal strengthen the top-down control of the prey by the predator at intermediate dispersal rates. As a consequence the regional stability of the metacommunity is increased at intermediate dispersal rates. Our results show that density-dependent dispersal and relative dispersal of species are keys to understanding the response of ecosystems to fragmentation

    Data from: Relative impacts of environmental variation and evolutionary history on the nestedness and modularity of tree-herbivore networks.

    No full text
    Nestedness and modularity are measures of ecological networks whose causative effects are little understood. We analyzed antagonistic plant–herbivore bipartite networks using common gardens in two contrasting environments comprised of aspen trees with differing evolutionary histories of defence against herbivores. These networks were tightly connected owing to a high level of specialization of arthropod herbivores that spend a large proportion of the life cycle on aspen. The gardens were separated by ten degrees of latitude with resultant differences in abiotic conditions. We evaluated network metrics and reported similar connectance between gardens but greater numbers of links per species in the northern common garden. Interaction matrices revealed clear nestedness, indicating subsetting of the bipartite interactions into specialist divisions, in both the environmental and evolutionary aspen groups, although nestedness values were only significant in the northern garden. Variation in plant vulnerability, measured as the frequency of herbivore specialization in the aspen population, was significantly partitioned by environment (common garden) but not by evolutionary origin of the aspens. Significant values of modularity were observed in all network matrices. Trait-matching indicated that growth traits, leaf morphology, and phenolic metabolites affected modular structure in both the garden and evolutionary groups, whereas extra-floral nectaries had little influence. Further examination of module configuration revealed that plant vulnerability explained considerable variance in web structure. The contrasting conditions between the two gardens resulted in bottom-up effects of the environment, which most strongly influenced the overall network architecture, however, the aspen groups with dissimilar evolutionary history also showed contrasting degrees of nestedness and modularity. Our research therefore shows that, while evolution does affect the structure of aspen–herbivore bipartite networks, the role of environmental variations is a dominant constraint

    Relative impacts of environmental variation and evolutionary history on the nestedness and modularity of tree-herbivore networks

    No full text
    Nestedness and modularity are measures of ecological networks whose causative effects are little understood. We analyzed antagonistic plant-herbivore bipartite networks using common gardens in two contrasting environments comprised of aspen trees with differing evolutionary histories of defence against herbivores. These networks were tightly connected owing to a high level of specialization of arthropod herbivores that spend a large proportion of the life cycle on aspen. The gardens were separated by ten degrees of latitude with resultant differences in abiotic conditions. We evaluated network metrics and reported similar connectance between gardens but greater numbers of links per species in the northern common garden. Interaction matrices revealed clear nestedness, indicating subsetting of the bipartite interactions into specialist divisions, in both the environmental and evolutionary aspen groups, although nestedness values were only significant in the northern garden. Variation in plant vulnerability, measured as the frequency of herbivore specialization in the aspen population, was significantly partitioned by environment (common garden) but not by evolutionary origin of the aspens. Significant values of modularity were observed in all network matrices. Trait-matching indicated that growth traits, leaf morphology, and phenolic metabolites affected modular structure in both the garden and evolutionary groups, whereas extra-floral nectaries had little influence. Further examination of module configuration revealed that plant vulnerability explained considerable variance in web structure. The contrasting conditions between the two gardens resulted in bottom-up effects of the environment, which most strongly influenced the overall network architecture, however, the aspen groups with dissimilar evolutionary history also showed contrasting degrees of nestedness and modularity. Our research therefore shows that, while evolution does affect the structure of aspen-herbivore bipartite networks, the role of environmental variations is a dominant constraint

    Топливозаправочные комплексы

    Get PDF
    Рассмотрены принципы функционирования основного и вспомогательного оборудования АЗС, а также правильный выбор оптимального режима АЗС в целом. Для слушателей специальности 1-70 05 75 «Трубопроводный транспорт, хранение и реализация нефтепродуктов» ИПК и ПК
    corecore