19 research outputs found

    QTL and candidate gene mapping for polyphenolic composition in apple fruit

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The polyphenolic products of the phenylpropanoid pathway, including proanthocyanidins, anthocyanins and flavonols, possess antioxidant properties that may provide health benefits. To investigate the genetic architecture of control of their biosynthesis in apple fruit, various polyphenolic compounds were quantified in progeny from a 'Royal Gala' × 'Braeburn' apple population segregating for antioxidant content, using ultra high performance liquid chromatography of extracts derived from fruit cortex and skin.</p> <p>Results</p> <p>Construction of genetic maps for 'Royal Gala' and 'Braeburn' enabled detection of 79 quantitative trait loci (QTL) for content of 17 fruit polyphenolic compounds. Seven QTL clusters were stable across two years of harvest and included QTLs for content of flavanols, flavonols, anthocyanins and hydroxycinnamic acids. Alignment of the parental genetic maps with the apple whole genome sequence <it>in silico </it>enabled screening for co-segregation with the QTLs of a range of candidate genes coding for enzymes in the polyphenolic biosynthetic pathway. This co-location was confirmed by genetic mapping of markers derived from the gene sequences. <it>Leucoanthocyanidin reductase </it>(<it>LAR1</it>) co-located with a QTL cluster for the fruit flavanols catechin, epicatechin, procyanidin dimer and five unknown procyanidin oligomers identified near the top of linkage group (LG) 16, while <it>hydroxy cinnamate/quinate transferase </it>(<it>HCT</it>/<it>HQT</it>) co-located with a QTL for chlorogenic acid concentration mapping near the bottom of LG 17.</p> <p>Conclusion</p> <p>We conclude that <it>LAR1 </it>and <it>HCT</it>/<it>HQT </it>are likely to influence the concentration of these compounds in apple fruit and provide useful allele-specific markers for marker assisted selection of trees bearing fruit with healthy attributes.</p

    Identification moléculaire et caractérisation fonctionnelle d'une nouvelle sous-famille de cytochromes P450, CYP71AZ, impliquée dans la synthÚse de furanocoumarines et coumarines chez Pastinaca sativa

    No full text
    AccĂšs restreint aux membres de l'UniversitĂ© de Lorraine jusqu'au 2016-12-15Furanocoumarins (FCs) are secondary metabolites mainly synthetized in four botanical families deriving from the phenylpropanoid biosynthetic pathway. These phytoalexins are involved in plant defense mechanisms and present strong therapeutic potential. Early studies in the 1960s based on cell cultures and the use of radiolabeled precursors have shown that many enzymes involved in this pathway belong to the cytochrome P450 family (P450s). Only two of them had been identified from a molecular point of view at the beginning of this thesis. In order to generate information regarding the genome of plants producing FCs, we sequenced the mRNA extracted from leaves of Pastinaca sativa, Ruta graveolens, and Cullen cinereum. In silico analysis of these three libraries identified nearly 800 cDNA fragments encoding for P450s. Previous studies in the laboratory and comparative transcriptome analysis of these three plants have led us to focus on the subfamily CYP71AZ through a detailed study of CYP71AZ3 and CYP71AZ4. Functional characterization of these enzymes was performed in an eukaryote heterologous expression system: Saccharomyces cerevisiae. The results showed that CYP71AZ4 had a broad substrate specificity enough as it could metabolize one FC and 4 coumarins. The analysis and comparison of the kinetic constants for each of these substrates indicate, however, that the preferred substrate is psoralen. The functional characterization of CYP71AZ3 showed that this enzyme could hydroxylate esculetin, a coumarin, but played no role in the synthesis of FCs. This study highlights the functional diversity within a single enzyme subfamily and allows to issue new hypotheses about the emergence of this biosynthetic pathway in Apiaceae on one hand, and among other botanical families on the other handLes furanocoumarines (FCs) sont des mĂ©tabolites secondaires principalement synthĂ©tisĂ©s chez quatre familles botaniques et dĂ©rivent de la voie de biosynthĂšse des phĂ©nylpropanoĂŻdes. Ces phytoalexines interviennent dans les processus de dĂ©fense de la plante et prĂ©sentent un fort potentiel thĂ©rapeutique. Des travaux rĂ©alisĂ©s dans les annĂ©es 1960 sur des cultures cellulaires en parallĂšle de l’utilisation de prĂ©curseurs radiomarquĂ©s ont permis de dĂ©montrer que de nombreuses enzymes impliquĂ©es dans cette voie appartenaient Ă  la famille des cytochromes P450 (P450s). Seules deux d’entre elles avaient pu ĂȘtre identifiĂ©es d’un point de vue molĂ©culaire au dĂ©but de ce travail de thĂšse. Afin de gĂ©nĂ©rer des informations concernant le gĂ©nome de plantes productrices de FCs, nous avons fait sĂ©quencer les ARNm extraits de feuilles de Pastinaca sativa, de Ruta graveolens et de Cullen cinereum. L’analyse in silico de ces trois banques de donnĂ©es a permis d’identifier prĂšs de 800 fragments d’ADNc codants pour des P450s. Des travaux antĂ©rieurs rĂ©alisĂ©s au laboratoire et l’analyse comparative des transcriptomes de ces 3 plantes nous ont amenĂ©s Ă  nous focaliser sur la sous-famille CYP71AZ au travers d’une Ă©tude fine de CYP71AZ3 et CYP71AZ4. La caractĂ©risation fonctionnelle de ces enzymes a Ă©tĂ© rĂ©alisĂ©e dans un systĂšme d’expression hĂ©tĂ©rologue eucaryote : Saccharomyces cerevisiae. Les rĂ©sultats obtenus ont permis de montrer que CYP71AZ4 avait une spĂ©cificitĂ© de substrat assez large puisqu’elle pouvait mĂ©taboliser au moins une FC et 4 coumarines. L’analyse et la comparaison des constantes cinĂ©tiques pour chacun de ces substrats indiquent nĂ©anmoins que le psoralĂšne est le substrat prĂ©fĂ©rentiel. La caractĂ©risation fonctionnelle de CYP71AZ3 a mis en Ă©vidence que cette enzyme pouvait hydroxyler l’esculĂ©tine, une coumarine, mais ne jouait aucun rĂŽle dans la synthĂšse de FCs. Ces travaux mettent en Ă©vidence la diversitĂ© fonctionnelle au sein d’une mĂȘme sous-famille enzymatique et permettent d’émettre des hypothĂšses nouvelles quant Ă  l’apparition de cette voie de biosynthĂšse chez les ApiacĂ©es d’une part, et chez les autres familles botaniques d’autre par

    Molecular isolation and functional characterization of a novel cytochrome P450 subfamily, CYP71AZ, involved in the biosynthesis of furanocoumarins and coumarins in Pastinaca sativa

    No full text
    Les furanocoumarines (FCs) sont des mĂ©tabolites secondaires principalement synthĂ©tisĂ©s chez quatre familles botaniques et dĂ©rivent de la voie de biosynthĂšse des phĂ©nylpropanoĂŻdes. Ces phytoalexines interviennent dans les processus de dĂ©fense de la plante et prĂ©sentent un fort potentiel thĂ©rapeutique. Des travaux rĂ©alisĂ©s dans les annĂ©es 1960 sur des cultures cellulaires en parallĂšle de l’utilisation de prĂ©curseurs radiomarquĂ©s ont permis de dĂ©montrer que de nombreuses enzymes impliquĂ©es dans cette voie appartenaient Ă  la famille des cytochromes P450 (P450s). Seules deux d’entre elles avaient pu ĂȘtre identifiĂ©es d’un point de vue molĂ©culaire au dĂ©but de ce travail de thĂšse. Afin de gĂ©nĂ©rer des informations concernant le gĂ©nome de plantes productrices de FCs, nous avons fait sĂ©quencer les ARNm extraits de feuilles de Pastinaca sativa, de Ruta graveolens et de Cullen cinereum. L’analyse in silico de ces trois banques de donnĂ©es a permis d’identifier prĂšs de 800 fragments d’ADNc codants pour des P450s. Des travaux antĂ©rieurs rĂ©alisĂ©s au laboratoire et l’analyse comparative des transcriptomes de ces 3 plantes nous ont amenĂ©s Ă  nous focaliser sur la sous-famille CYP71AZ au travers d’une Ă©tude fine de CYP71AZ3 et CYP71AZ4. La caractĂ©risation fonctionnelle de ces enzymes a Ă©tĂ© rĂ©alisĂ©e dans un systĂšme d’expression hĂ©tĂ©rologue eucaryote : Saccharomyces cerevisiae. Les rĂ©sultats obtenus ont permis de montrer que CYP71AZ4 avait une spĂ©cificitĂ© de substrat assez large puisqu’elle pouvait mĂ©taboliser au moins une FC et 4 coumarines. L’analyse et la comparaison des constantes cinĂ©tiques pour chacun de ces substrats indiquent nĂ©anmoins que le psoralĂšne est le substrat prĂ©fĂ©rentiel. La caractĂ©risation fonctionnelle de CYP71AZ3 a mis en Ă©vidence que cette enzyme pouvait hydroxyler l’esculĂ©tine, une coumarine, mais ne jouait aucun rĂŽle dans la synthĂšse de FCs. Ces travaux mettent en Ă©vidence la diversitĂ© fonctionnelle au sein d’une mĂȘme sous-famille enzymatique et permettent d’émettre des hypothĂšses nouvelles quant Ă  l’apparition de cette voie de biosynthĂšse chez les ApiacĂ©es d’une part, et chez les autres familles botaniques d’autre partFuranocoumarins (FCs) are secondary metabolites mainly synthetized in four botanical families deriving from the phenylpropanoid biosynthetic pathway. These phytoalexins are involved in plant defense mechanisms and present strong therapeutic potential. Early studies in the 1960s based on cell cultures and the use of radiolabeled precursors have shown that many enzymes involved in this pathway belong to the cytochrome P450 family (P450s). Only two of them had been identified from a molecular point of view at the beginning of this thesis. In order to generate information regarding the genome of plants producing FCs, we sequenced the mRNA extracted from leaves of Pastinaca sativa, Ruta graveolens, and Cullen cinereum. In silico analysis of these three libraries identified nearly 800 cDNA fragments encoding for P450s. Previous studies in the laboratory and comparative transcriptome analysis of these three plants have led us to focus on the subfamily CYP71AZ through a detailed study of CYP71AZ3 and CYP71AZ4. Functional characterization of these enzymes was performed in an eukaryote heterologous expression system: Saccharomyces cerevisiae. The results showed that CYP71AZ4 had a broad substrate specificity enough as it could metabolize one FC and 4 coumarins. The analysis and comparison of the kinetic constants for each of these substrates indicate, however, that the preferred substrate is psoralen. The functional characterization of CYP71AZ3 showed that this enzyme could hydroxylate esculetin, a coumarin, but played no role in the synthesis of FCs. This study highlights the functional diversity within a single enzyme subfamily and allows to issue new hypotheses about the emergence of this biosynthetic pathway in Apiaceae on one hand, and among other botanical families on the other han

    Molecular isolation and functional characterization of a novel cytochrome P450 subfamily, CYP71AZ, involved in the biosynthesis of furanocoumarins and coumarins in Pastinaca sativa

    No full text
    Les furanocoumarines (FCs) sont des mĂ©tabolites secondaires principalement synthĂ©tisĂ©s chez quatre familles botaniques et dĂ©rivent de la voie de biosynthĂšse des phĂ©nylpropanoĂŻdes. Ces phytoalexines interviennent dans les processus de dĂ©fense de la plante et prĂ©sentent un fort potentiel thĂ©rapeutique. Des travaux rĂ©alisĂ©s dans les annĂ©es 1960 sur des cultures cellulaires en parallĂšle de l’utilisation de prĂ©curseurs radiomarquĂ©s ont permis de dĂ©montrer que de nombreuses enzymes impliquĂ©es dans cette voie appartenaient Ă  la famille des cytochromes P450 (P450s). Seules deux d’entre elles avaient pu ĂȘtre identifiĂ©es d’un point de vue molĂ©culaire au dĂ©but de ce travail de thĂšse. Afin de gĂ©nĂ©rer des informations concernant le gĂ©nome de plantes productrices de FCs, nous avons fait sĂ©quencer les ARNm extraits de feuilles de Pastinaca sativa, de Ruta graveolens et de Cullen cinereum. L’analyse in silico de ces trois banques de donnĂ©es a permis d’identifier prĂšs de 800 fragments d’ADNc codants pour des P450s. Des travaux antĂ©rieurs rĂ©alisĂ©s au laboratoire et l’analyse comparative des transcriptomes de ces 3 plantes nous ont amenĂ©s Ă  nous focaliser sur la sous-famille CYP71AZ au travers d’une Ă©tude fine de CYP71AZ3 et CYP71AZ4. La caractĂ©risation fonctionnelle de ces enzymes a Ă©tĂ© rĂ©alisĂ©e dans un systĂšme d’expression hĂ©tĂ©rologue eucaryote : Saccharomyces cerevisiae. Les rĂ©sultats obtenus ont permis de montrer que CYP71AZ4 avait une spĂ©cificitĂ© de substrat assez large puisqu’elle pouvait mĂ©taboliser au moins une FC et 4 coumarines. L’analyse et la comparaison des constantes cinĂ©tiques pour chacun de ces substrats indiquent nĂ©anmoins que le psoralĂšne est le substrat prĂ©fĂ©rentiel. La caractĂ©risation fonctionnelle de CYP71AZ3 a mis en Ă©vidence que cette enzyme pouvait hydroxyler l’esculĂ©tine, une coumarine, mais ne jouait aucun rĂŽle dans la synthĂšse de FCs. Ces travaux mettent en Ă©vidence la diversitĂ© fonctionnelle au sein d’une mĂȘme sous-famille enzymatique et permettent d’émettre des hypothĂšses nouvelles quant Ă  l’apparition de cette voie de biosynthĂšse chez les ApiacĂ©es d’une part, et chez les autres familles botaniques d’autre partFuranocoumarins (FCs) are secondary metabolites mainly synthetized in four botanical families deriving from the phenylpropanoid biosynthetic pathway. These phytoalexins are involved in plant defense mechanisms and present strong therapeutic potential. Early studies in the 1960s based on cell cultures and the use of radiolabeled precursors have shown that many enzymes involved in this pathway belong to the cytochrome P450 family (P450s). Only two of them had been identified from a molecular point of view at the beginning of this thesis. In order to generate information regarding the genome of plants producing FCs, we sequenced the mRNA extracted from leaves of Pastinaca sativa, Ruta graveolens, and Cullen cinereum. In silico analysis of these three libraries identified nearly 800 cDNA fragments encoding for P450s. Previous studies in the laboratory and comparative transcriptome analysis of these three plants have led us to focus on the subfamily CYP71AZ through a detailed study of CYP71AZ3 and CYP71AZ4. Functional characterization of these enzymes was performed in an eukaryote heterologous expression system: Saccharomyces cerevisiae. The results showed that CYP71AZ4 had a broad substrate specificity enough as it could metabolize one FC and 4 coumarins. The analysis and comparison of the kinetic constants for each of these substrates indicate, however, that the preferred substrate is psoralen. The functional characterization of CYP71AZ3 showed that this enzyme could hydroxylate esculetin, a coumarin, but played no role in the synthesis of FCs. This study highlights the functional diversity within a single enzyme subfamily and allows to issue new hypotheses about the emergence of this biosynthetic pathway in Apiaceae on one hand, and among other botanical families on the other han

    The aphid-transmitted Turnip yellows virus Differentially Affects Volatiles Emission and Subsequent Vector Behavior in Two Brassicaceae Plants

    No full text
    Aphids are important pests which cause direct damage by feeding or indirect prejudice by transmitting plant viruses. Viruses are known to induce modifications of plant cues in ways that can alter vector behavior and virus transmission. In this work, we addressed whether the modifications induced by the aphid-transmitted Turnip yellows virus (TuYV) in the model plant Arabidopsis thaliana also apply to the cultivated plant Camelina sativa, both belonging to the Brassicaceae family. In most experiments, we observed a significant increase in the relative emission of volatiles from TuYV-infected plants. Moreover, due to plant size, the global amounts of volatiles emitted by C. sativa were higher than those released by A. thaliana. In addition, the volatiles released by TuYV-infected C. sativa attracted the TuYV vector Myzus persicae more efficiently than those emitted by non-infected plants. In contrast, no such preference was observed for A. thaliana. We propose that high amounts of volatiles rather than specific metabolites are responsible for aphid attraction to infected C. sativa. This study points out that the data obtained from the model pathosystem A. thaliana/TuYV cannot be straightforwardly extrapolated to a related plant species infected with the same virus

    Molecular evolution of parsnip (Pastinaca sativa) membrane-bound prenyltransferases for linear and/or angular furanocoumarin biosynthesis

    No full text
    International audienceIn Apiaceae, furanocoumarins (FCs) are plant defence compounds that are present as linear or angular isomers. Angular isomers appeared during plant evolution as a protective response to herbivores that are resistant to linear molecules. Isomeric biosynthesis occurs through prenylation at the C6 or C8 position of umbelliferone. Here, we report cloning and functional characterization of two different prenyltransferases, Pastinaca sativa prenyltransferase 1 and 2 (PsPT1 and PsPT2), that are involved in these crucial reactions. Both enzymes are targeted to plastids and synthesize osthenol and demethylsuberosin (DMS) using exclusively umbelliferone and dimethylallylpyrophosphate (DMAPP) as substrates. Enzymatic characterization using heterologously expressed proteins demonstrated that PsPT1 is specialized for the synthesis of the linear form, demethylsuberosin, whereas PsPT2 more efficiently catalyses the synthesis of its angular counterpart, osthenol. These results are the first example of a complementary prenyltransferase pair from a single plant species that is involved in synthesizing defensive compounds. This study also provides a better understanding of the molecular mechanisms governing the angular FC biosynthetic pathway in apiaceous plants, which involves two paralogous enzymes that share the same phylogenetic origin
    corecore