20 research outputs found

    Functional analysis of HOXD9 in human gliomas and glioma cancer stem cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>HOX </it>genes encode a family of homeodomain-containing transcription factors involved in the determination of cell fate and identity during embryonic development. They also behave as oncogenes in some malignancies.</p> <p>Results</p> <p>In this study, we found high expression of the <it>HOXD9 </it>gene transcript in glioma cell lines and human glioma tissues by quantitative real-time PCR. Using immunohistochemistry, we observed HOXD9 protein expression in human brain tumor tissues, including astrocytomas and glioblastomas. To investigate the role of <it>HOXD9 </it>in gliomas, we silenced its expression in the glioma cell line U87 using <it>HOXD9</it>-specific siRNA, and observed decreased cell proliferation, cell cycle arrest, and induction of apoptosis. It was suggested that <it>HOXD9 </it>contributes to both cell proliferation and/or cell survival. The <it>HOXD9 </it>gene was highly expressed in a side population (SP) of SK-MG-1 cells that was previously identified as an enriched-cell fraction of glioma cancer stem-like cells. <it>HOXD9 </it>siRNA treatment of SK-MG-1 SP cells resulted in reduced cell proliferation. Finally, we cultured human glioma cancer stem cells (GCSCs) from patient specimens found with high expression of <it>HOXD9 </it>in GCSCs compared with normal astrocyte cells and neural stem/progenitor cells (NSPCs).</p> <p>Conclusions</p> <p>Our results suggest that <it>HOXD9 </it>may be a novel marker of GCSCs and cell proliferation and/or survival factor in gliomas and glioma cancer stem-like cells, and a potential therapeutic target.</p

    Single-cell transcriptomics reveals shared immunosuppressive landscapes of mouse and human neuroblastoma

    Full text link
    BACKGROUND High-risk neuroblastoma is a pediatric cancer with still a dismal prognosis, despite multimodal and intensive therapies. Tumor microenvironment represents a key component of the tumor ecosystem the complexity of which has to be accurately understood to define selective targeting opportunities, including immune-based therapies. METHODS We combined various approaches including single-cell transcriptomics to dissect the tumor microenvironment of both a transgenic mouse neuroblastoma model and a cohort of 10 biopsies from neuroblastoma patients, either at diagnosis or at relapse. Features of related cells were validated by multicolor flow cytometry and functional assays. RESULTS We show that the immune microenvironment of MYCN-driven mouse neuroblastoma is characterized by a low content of T cells, several phenotypes of macrophages and a population of cells expressing signatures of myeloid-derived suppressor cells (MDSCs) that are molecularly distinct from the various macrophage subsets. We document two cancer-associated fibroblasts (CAFs) subsets, one of which corresponding to CAF-S1, known to have immunosuppressive functions. Our data unravel a complex content in myeloid cells in patient tumors and further document a striking correspondence of the microenvironment populations between both mouse and human tumors. We show that mouse intratumor T cells exhibit increased expression of inhibitory receptors at the protein level. Consistently, T cells from patients are characterized by features of exhaustion, expressing inhibitory receptors and showing low expression of effector cytokines. We further functionally demonstrate that MDSCs isolated from mouse neuroblastoma have immunosuppressive properties, impairing the proliferation of T lymphocytes. CONCLUSIONS Our study demonstrates that neuroblastoma tumors have an immunocompromised microenvironment characterized by dysfunctional T cells and accumulation of immunosuppressive cells. Our work provides a new and precious data resource to better understand the neuroblastoma ecosystem and suggest novel therapeutic strategies, targeting both tumor cells and components of the microenvironment

    Reversible transitions between noradrenergic and mesenchymal tumor identities define cell plasticity in neuroblastoma

    Get PDF
    Noradrenergic and mesenchymal identities have been characterized in neuroblastoma cell lines according to their epigenetic landscapes and core regulatory circuitries. However, their relationship and relative contribution in patient tumors remain poorly defined. We now document spontaneous and reversible plasticity between the two identities, associated with epigenetic reprogramming, in several neuroblastoma models. Interestingly, xenografts with cells from each identity eventually harbor a noradrenergic phenotype suggesting that the microenvironment provides a powerful pressure towards this phenotype. Accordingly, such a noradrenergic cell identity is systematically observed in single-cell RNA-seq of 18 tumor biopsies and 15 PDX models. Yet, a subpopulation of these noradrenergic tumor cells presents with mesenchymal features that are shared with plasticity models, indicating that the plasticity described in these models has relevance in neuroblastoma patients. This work therefore emphasizes that intrinsic plasticity properties of neuroblastoma cells are dependent upon external cues of the environment to drive cell identity

    Clinical Relevance of Tumor Cells with Stem-Like Properties in Pediatric Brain Tumors

    Get PDF
    BACKGROUND: Primitive brain tumors are the leading cause of cancer-related death in children. Tumor cells with stem-like properties (TSCs), thought to account for tumorigenesis and therapeutic resistance, have been isolated from high-grade gliomas in adults. Whether TSCs are a common component of pediatric brain tumors and are of clinical relevance remains to be determined. METHODOLOGY/PRINCIPAL FINDINGS: Tumor cells with self-renewal properties were isolated with cell biology techniques from a majority of 55 pediatric brain tumors samples, regardless of their histopathologies and grades of malignancy (57% of embryonal tumors, 57% of low-grade gliomas and neuro-glial tumors, 70% of ependymomas, 91% of high-grade gliomas). Most high-grade glioma-derived oncospheres (10/12) sustained long-term self-renewal akin to neural stem cells (>7 self-renewals), whereas cells with limited renewing abilities akin to neural progenitors dominated in all other tumors. Regardless of tumor entities, the young age group was associated with self-renewal properties akin to neural stem cells (P = 0.05, chi-square test). Survival analysis of the cohort showed an association between isolation of cells with long-term self-renewal abilities and a higher patient mortality rate (P = 0.013, log-rank test). Sampling of low- and high-grade glioma cultures showed that self-renewing cells forming oncospheres shared a molecular profile comprising embryonic and neural stem cell markers. Further characterization performed on subsets of high-grade gliomas and one low-grade glioma culture showed combination of this profile with mesenchymal markers, the radio-chemoresistance of the cells and the formation of aggressive tumors after intracerebral grafting. CONCLUSIONS/SIGNIFICANCE: In brain tumors affecting adult patients, TSCs have been isolated only from high-grade gliomas. In contrast, our data show that tumor cells with stem cell-like or progenitor-like properties can be isolated from a wide range of histological sub-types and grades of pediatric brain tumors. They suggest that cellular mechanisms fueling tumor development differ between adult and pediatric brain tumors

    Ontogenic Changes in Hematopoietic Hierarchy Determine Pediatric Specificity and Disease Phenotype in Fusion Oncogene-Driven Myeloid Leukemia.

    Get PDF
    Fusion oncogenes are prevalent in several pediatric cancers, yet little is known about the specific associations between age and phenotype. We observed that fusion oncogenes, such as ETO2-GLIS2, are associated with acute megakaryoblastic or other myeloid leukemia subtypes in an age-dependent manner. Analysis of a novel inducible transgenic mouse model showed that ETO2-GLIS2 expression in fetal hematopoietic stem cells induced rapid megakaryoblastic leukemia whereas expression in adult bone marrow hematopoietic stem cells resulted in a shift toward myeloid transformation with a strikingly delayed in vivo leukemogenic potential. Chromatin accessibility and single-cell transcriptome analyses indicate ontogeny-dependent intrinsic and ETO2-GLIS2-induced differences in the activities of key transcription factors, including ERG, SPI1, GATA1, and CEBPA. Importantly, switching off the fusion oncogene restored terminal differentiation of the leukemic blasts. Together, these data show that aggressiveness and phenotypes in pediatric acute myeloid leukemia result from an ontogeny-related differential susceptibility to transformation by fusion oncogenes. SIGNIFICANCE: This work demonstrates that the clinical phenotype of pediatric acute myeloid leukemia is determined by ontogeny-dependent susceptibility for transformation by oncogenic fusion genes. The phenotype is maintained by potentially reversible alteration of key transcription factors, indicating that targeting of the fusions may overcome the differentiation blockage and revert the leukemic state.See related commentary by Cruz Hernandez and Vyas, p. 1653.This article is highlighted in the In This Issue feature, p. 1631

    CD133, CD15/SSEA-1, CD34 or side populations do not resume tumor-initiating properties of long-term cultured cancer stem cells from human malignant glio-neuronal tumors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tumor initiating cells (TICs) provide a new paradigm for developing original therapeutic strategies.</p> <p>Methods</p> <p>We screened for TICs in 47 human adult brain malignant tumors. Cells forming floating spheres in culture, and endowed with all of the features expected from tumor cells with stem-like properties were obtained from glioblastomas, medulloblastoma but not oligodendrogliomas.</p> <p>Results</p> <p>A long-term self-renewal capacity was particularly observed for cells of malignant glio-neuronal tumors (MGNTs). Cell sorting, karyotyping and proteomic analysis demonstrated cell stability throughout prolonged passages. Xenografts of fewer than 500 cells in Nude mouse brains induced a progressively growing tumor. CD133, CD15/LeX/Ssea-1, CD34 expressions, or exclusion of Hoechst dye occurred in subsets of cells forming spheres, but was not predictive of their capacity to form secondary spheres or tumors, or to resist high doses of temozolomide.</p> <p>Conclusions</p> <p>Our results further highlight the specificity of a subset of high-grade gliomas, MGNT. TICs derived from these tumors represent a new tool to screen for innovative therapies.</p

    Approche protéomique de la physiopathologie des gliomes

    No full text
    Les gliomes malins sont les tumeurs primitives du système nerveux central humain adulte les plus fréquentes. Malgré les récentes avancées thérapeutiques, ces cancers restent incurables. Pour commencer, nous avons établi le profil protéomique des oligodendrogliomes (ODG) de l adulte présentant la mutation de l isocitrate déshydrogénase 1 (IDH1). Nous avons établi une signature des cellules tumorales, parmi une série de 68 protéines dérégulées dans le tissu tumoral. Nous avons ensuite établi un profil moléculaire de 42 protéines spécifiquement dérégulées dans les ODG mutés, en comparaison aux non mutés. Ensuite, nous avons établi les protéomes des cellules souches cancéreuses issues de glioblastomes de l adulte (CSC), et les avons comparées à celui de cellules souches neurales normales (CSN), et au tissu tumoral d origine. Parmi les protéines dérégulées dans les CSC, nous avons identifié le facteur Hepatoma-derived growth factor (HDGF) et montré qu il est spécifiquement sécrété par les CSC, entrainant la prolifération et la migration des cellules endothéliales in vitro, et la formation d une angiogénèse in vivo. Nous avons également testé le Résveratrol, une molécule naturelle aux propriétés anti-cancéreuses. Nous avons démontré que cette drogue est capable de cibler spécifiquement les CSC en épargnant les CSN, suggérant une application clinique potentielle. Enfin, nous avons pu identifier des cellules souches cancéreuses parmi les gliomes de l enfant quel que soient le type et le grade de gliome. Nous les avons caractérisées et avons montré une corrélation entre le devenir des patients et le potentiel d auto-renouvellement, proposé donc comme facteur de mauvais pronostic.PARIS-BIUSJ-Physique recherche (751052113) / SudocSudocFranceF

    Molecular pathways driven by ETO2-GLIS2 in aggressive pediatric leukemia

    No full text
    The ETO2-GLIS2 fusion oncoprotein is associated with poor prognosis pediatric acute megakaryoblastic leukemia. Recently, we observed that ETO2-GLIS2 controls enhancers activity at genes regulating haematopoietic progenitor self-renewal and differentiation toward the megakaryocytic lineage. We also showed that targeting ETO2-GLIS2 complex stability inhibits these properties and may represent a novel therapeutic strategy

    Plasticity in Neuroblastoma Cell Identity Defines a Noradrenergic-to-Mesenchymal Transition (NMT)

    No full text
    Neuroblastoma, a pediatric cancer of the peripheral sympathetic nervous system, is characterized by an important clinical heterogeneity, and high-risk tumors are associated with a poor overall survival. Neuroblastoma cells may present with diverse morphological and biochemical properties in vitro, and seminal observations suggested that interconversion between two phenotypes called N-type and S-type may occur. In 2017, two main studies provided novel insights into these subtypes through the characterization of the transcriptomic and epigenetic landscapes of a panel of neuroblastoma cell lines. In this review, we focus on the available data that define neuroblastoma cell identity and propose to use the term noradrenergic (NOR) and mesenchymal (MES) to refer to these identities. We also address the question of transdifferentiation between both states and suggest that the plasticity between the NOR identity and the MES identity defines a noradrenergic-to-mesenchymal transition, reminiscent of but different from the well-established epithelial-to-mesenchymal transition
    corecore