94 research outputs found

    The universal variability of the stellar initial mass function probed by the TIMER survey

    Get PDF
    The debate about the universality of the stellar initial mass function (IMF) revolves around two competing lines of evidence. While measurements in the Milky Way, an archetypal spiral galaxy, seem to support an invariant IMF, the observed properties of massive early-type galaxies (ETGs) favor an IMF somehow sensitive to the local star-formation conditions. However, the fundamental methodological and physical differences between the two approaches have hampered a comprehensive understanding of IMF variations. Here, we describe an improved modeling scheme that, for the first time, allows consistent IMF measurements across stellar populations with different ages and complex star-formation histories (SFHs). Making use of the exquisite MUSE optical data from the TIMER survey and powered by the MILES stellar population models, we show the age, metallicity, [Mg/Fe], and IMF slope maps of the inner regions of NGC 3351, a spiral galaxy with a mass similar to that of the Milky Way. The measured IMF values in NGC 3351 follow the expectations from a Milky Way-like IMF, although they simultaneously show systematic and spatially coherent variations, particularly for low-mass stars. In addition, our stellar population analysis reveals the presence of metal-poor and Mg-enhanced star-forming regions that appear to be predominantly enriched by the stellar ejecta of core-collapse supernovae. Our findings therefore showcase the potential of detailed studies of young stellar populations to provide the means to better understand the early stages of galaxy evolution and, in particular, the origin of the observed IMF variations beyond and within the Milky Way

    Long-term hydrological changes in northern Iberia (4.9–0.9 ky BP) from speleothem Mg/Ca ratios and cave monitoring (Ojo Guareña Karst Complex, Spain)

    Get PDF
    An absolute-dated stalagmite from Kaite Cave (Ojo Guareña Karst Complex, N Spain) provides a nearly continuous, high-resolution record of a proxy of regional precipitation patterns through the 4.9–0.9 ka BP interval. This record is based on the Mg/Ca ratio of the calcite and its variation through the stalagmite stratigraphy, which is interpreted to be primarily driven by changes in precipitation amount. The calibration of the proxy is supported by the present-day monitoring carried out in the cave for the last 10 years, which reveals a robust inverse relationship between the inter-annual/inter-decadal variability of rainfall and the Mg concentration of dripwaters and precipitating speleothems. The record of paleoprecipitation, based on 2400 Mg/Ca measurements, shows strong variability at inter-annual to inter-decadal scales, and more subtle but significant changes at secular to millennial scales. This long-term paleohydrological evolution outlines five successive intervals with consistent trends, which are bounded by abrupt shifts in the regional precipitation. These shifts took place at 4.65, 4.2, 2.6, and 1.3 ka BP. Significantly, the intervals of maximum precipitation of the whole record (around 4.9–4.65, 2.6–2.45, and 1.3–1.1 ka BP) can be related with episodes of minimum solar activity and correlated with cold climatic events elsewhere.Contribution to research projects 28 CGL2010-21499-BTE and CGL2013-43257-R of the Spanish R+D National Program 29 (MINECO) and research groups ‘‘Paleoclimatology and Global Change’’ and ‘‘Laser Induced 30 Breakdown Spectroscopy (LIBS)’’ from the UCM (Spain).Peer reviewe

    Transcriptional epigenetic regulation of Fkbp1/Pax9 genes is associated with impaired sensitivity to platinum treatment in ovarian cancer

    Full text link
    Background: In an effort to contribute to overcoming the platinum resistance exhibited by most solid tumors, we performed an array of epigenetic approaches, integrating next-generation methodologies and public clinical data to identify new potential epi-biomarkers in ovarian cancer, which is considered the most devastating of gynecological malignancies. Methods: We cross-analyzed data from methylome assessments and restoration of gene expression through microarray expression in a panel of four paired cisplatin-sensitive/cisplatin-resistant ovarian cancer cell lines, along with publicly available clinical data from selected individuals representing the state of chemoresistance. We validated the methylation state and expression levels of candidate genes in each cellular phenotype through Sanger sequencing and reverse transcription polymerase chain reaction, respectively. We tested the biological role of selected targets using an ectopic expression plasmid assay in the sensitive/resistant tumor cell lines, assessing the cell viability in the transfected groups. Epigenetic features were also assessed in 189 primary samples obtained from ovarian tumors and controls. Results: We identified PAX9 and FKBP1B as potential candidate genes, which exhibited epigenetic patterns of expression regulation in the experimental approach. Re-establishment of FKBP1B expression in the resistant OVCAR3 phenotype in which this gene is hypermethylated and inhibited allowed it to achieve a degree of platinum sensitivity similar to the sensitive phenotype. The evaluation of these genes at a translational level revealed that PAX9 hypermethylation leads to a poorer prognosis in terms of overall survival. We also set a precedent for establishing a common epigenetic signature in which the validation of a single candidate, MEST, proved the accuracy of our computational pipelines. Conclusions: Epigenetic regulation of PAX9 and FKBP1B genes shows that methylation in non-promoter areas has the potential to control gene expression and thus biological consequences, such as the loss of platinum sensitivity. At the translational level, PAX9 behaves as a predictor of chemotherapy response to platinum in patients with ovarian cancer. This study revealed the importance of the transcript-specific study of each gene under potential epigenetic regulation, which would favor the identification of new markers capable of predicting each patient’s progression and therapeutic response.The study was financially supported by FIS (ISCIII) and ERDF/FSE funds (PI15/00186, PI18/0050, and ERDF/FSE, A way to make Europe). The authors gratefully acknowledge the Colombian Ministry for Science, Technology and Innovation (MINCIENCIAS), Code 568-2012, for providing J.S. with partial funding for this study

    Clocking the assembly of double-barred galaxies with the MUSE TIMER project

    Get PDF
    The formation of two stellar bars within a galaxy has proved challenging for numerical studies. It is not yet clear whether the inner bar is born via a star formation process promoted by gas inflow along the outer bar or whether it is dynamically assembled from instabilities in a small-scale stellar disc. Observational constraints to these scenarios are scarce. We present a thorough study of the stellar content of two double-barred galaxies observed by the MUSE TIMER project, NGC 1291 and NGC 5850, combined with a two-dimensional multicomponent photometric decomposition performed on the 3.6 μμm images from S^4G. Our analysis confirms the presence of σ-hollows appearing in the stellar velocity dispersion distribution at the ends of the inner bars. Both galaxies host inner discs matching in size with the inner bars, suggestive of a dynamical formation for the inner bars from small-scale discs. The analysis of the star formation histories for the structural components shaping the galaxies provides constraints on the epoch of dynamical assembly of the inner bars, which took place >6.5 Gyr ago for NGC 1291 and >4.5 Gyr ago for NGC 5850. This implies that inner bars are long-lived structures
    • …
    corecore